論文の概要: EuroCropsML: A Time Series Benchmark Dataset For Few-Shot Crop Type Classification
- arxiv url: http://arxiv.org/abs/2407.17458v1
- Date: Wed, 24 Jul 2024 17:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 12:55:41.683715
- Title: EuroCropsML: A Time Series Benchmark Dataset For Few-Shot Crop Type Classification
- Title(参考訳): EuroCropsML:Few-Shot Cropタイプ分類のための時系列ベンチマークデータセット
- Authors: Joana Reuss, Jan Macdonald, Simon Becker, Lorenz Richter, Marco Körner,
- Abstract要約: EuroCropsMLは、分析可能なリモートセンシング機械学習データセットである。
オープンソースのEuroCropsコレクションに基づいて、EuroCropsMLがZenodoで公開されている。
- 参考スコア(独自算出の注目度): 9.670182163018804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce EuroCropsML, an analysis-ready remote sensing machine learning dataset for time series crop type classification of agricultural parcels in Europe. It is the first dataset designed to benchmark transnational few-shot crop type classification algorithms that supports advancements in algorithmic development and research comparability. It comprises 706 683 multi-class labeled data points across 176 classes, featuring annual time series of per-parcel median pixel values from Sentinel-2 L1C data for 2021, along with crop type labels and spatial coordinates. Based on the open-source EuroCrops collection, EuroCropsML is publicly available on Zenodo.
- Abstract(参考訳): EuroCropsMLは分析可能なリモートセンシング機械学習データセットで,ヨーロッパにおける農業用雑草の時系列作物型分類を行う。
これは、アルゴリズム開発と研究コンパラビリティの進歩をサポートする、トランスナショナルな数ショットの作物型分類アルゴリズムをベンチマークするために設計された最初のデータセットである。
これは176のクラスにまたがる706のマルチクラスラベル付きデータポイントから構成されており、2021年のSentinel-2 L1Cデータから、収穫型ラベルと空間座標とともに、パーセルごとの中央値の年次時系列を特徴としている。
オープンソースのEuroCropsコレクションに基づいて、EuroCropsMLがZenodoで公開されている。
関連論文リスト
- Fields of The World: A Machine Learning Benchmark Dataset For Global Agricultural Field Boundary Segmentation [12.039406240082515]
Fields of The World (FTW)は、農業分野のインスタンスセグメンテーションのための新しいベンチマークデータセットである。
FTWは70,462個のサンプルを持つ以前のデータセットよりも桁違いに大きい。
FTWで訓練されたモデルは、留保国において、ゼロショットと微調整性能が向上していることを示す。
論文 参考訳(メタデータ) (2024-09-24T17:20:58Z) - Boosting Crop Classification by Hierarchically Fusing Satellite,
Rotational, and Contextual Data [0.0]
本研究では,複数年にわたる精度向上とロバスト性向上のためのモデルにマルチモーダル情報を融合する新しい手法を提案する。
このアプローチを評価するため、フランスとオランダで740万の農業パーセルの注釈付きデータセットを新たにリリースしました。
論文 参考訳(メタデータ) (2023-05-19T21:42:53Z) - Alibaba-Translate China's Submission for WMT 2022 Quality Estimation
Shared Task [80.22825549235556]
我々は、UniTEという品質評価共有タスクにおいて、文レベルのMQMベンチマークを提出する。
具体的には、トレーニング中に3種類の入力形式と事前学習された言語モデルを組み合わせたUniTEのフレームワークを用いる。
その結果,我々のモデルは多言語・英語・ロシア語設定では第1位,英語・ドイツ語・中国語設定では第2位に達した。
論文 参考訳(メタデータ) (2022-10-18T08:55:27Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
本稿では、Few-shot Region-aware Machine Translationのための新しいデータセットと評価ベンチマークFRMTを提案する。
このデータセットは、英語からポルトガル語と中国語の2つの地域変種へのプロの翻訳で構成されている。
論文 参考訳(メタデータ) (2022-10-01T05:02:04Z) - Multimodal Crop Type Classification Fusing Multi-Spectral Satellite Time
Series with Farmers Crop Rotations and Local Crop Distribution [0.0]
本稿では,3つのデータ型を用いた土地利用と作物型分類課題に取り組むことを提案する。
28級(.948)の5.1ポイント、9.6ポイントのマイクロF1の10級(.887)の精度。
論文 参考訳(メタデータ) (2022-08-23T09:41:09Z) - A Sentinel-2 multi-year, multi-country benchmark dataset for crop
classification and segmentation with deep learning [0.716879432974126]
Sen4AgriNetは、Sentinel-2ベースの時系列マルチカントリーベンチマークデータセットである。
カタルーニャとフランスの2016-2020年期間をカバーするために建設され、追加の国を含めることができる。
4250万のパーセルを含んでいるため、他の利用可能なアーカイブよりもはるかに大きい。
論文 参考訳(メタデータ) (2022-04-02T23:14:46Z) - Team Cogitat at NeurIPS 2021: Benchmarks for EEG Transfer Learning
Competition [55.34407717373643]
脳波復号のための主題に依存しないディープラーニングモデルの構築は、強い共シフトの課題に直面している。
我々のアプローチは、ディープラーニングモデルの様々な層に特徴分布を明示的に整列させることです。
この方法論は、NeurIPSカンファレンスで開催されている2021年のEEG Transfer Learningコンペティションで優勝した。
論文 参考訳(メタデータ) (2022-02-01T11:11:08Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - EuroCrops: A Pan-European Dataset for Time Series Crop Type
Classification [0.0]
EuroCropsは、作物の分類とマッピングのための訓練と評価のための、自己宣言型フィールドアノテーションに基づくデータセットである。
これにより、地球観測とリモートセンシングによるデータ駆動型土地被覆分類の研究活動と議論の充実を図る。
論文 参考訳(メタデータ) (2021-06-14T15:21:50Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - Semi-Supervised Semantic Segmentation in Earth Observation: The
MiniFrance Suite, Dataset Analysis and Multi-task Network Study [82.02173199363571]
我々は,地球観測における半教師付きセマンティックセマンティックセグメンテーションのための新しい大規模データセット,MiniFranceスイートを紹介した。
MiniFranceにはいくつかの前例のない特性があり、2000以上の超高解像度の空中画像を含み、200億枚以上のサンプル(ピクセル)を処理している。
外観の類似性やMiniFranceデータの徹底的な研究からデータ代表性分析のためのツールを提案し,半教師付き環境での学習や一般化に適していることを示す。
論文 参考訳(メタデータ) (2020-10-15T15:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。