Traversing Pareto Optimal Policies: Provably Efficient Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2407.17466v1
- Date: Wed, 24 Jul 2024 17:58:49 GMT
- Title: Traversing Pareto Optimal Policies: Provably Efficient Multi-Objective Reinforcement Learning
- Authors: Shuang Qiu, Dake Zhang, Rui Yang, Boxiang Lyu, Tong Zhang,
- Abstract summary: This paper investigates multi-objective reinforcement learning (MORL)
It focuses on learning optimal policies in the presence of multiple reward functions.
Despite MORL's success, there is still a lack of satisfactory understanding of various MORL optimization targets and efficient learning algorithms.
- Score: 14.260168974085376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates multi-objective reinforcement learning (MORL), which focuses on learning Pareto optimal policies in the presence of multiple reward functions. Despite MORL's significant empirical success, there is still a lack of satisfactory understanding of various MORL optimization targets and efficient learning algorithms. Our work offers a systematic analysis of several optimization targets to assess their abilities to find all Pareto optimal policies and controllability over learned policies by the preferences for different objectives. We then identify Tchebycheff scalarization as a favorable scalarization method for MORL. Considering the non-smoothness of Tchebycheff scalarization, we reformulate its minimization problem into a new min-max-max optimization problem. Then, for the stochastic policy class, we propose efficient algorithms using this reformulation to learn Pareto optimal policies. We first propose an online UCB-based algorithm to achieve an $\varepsilon$ learning error with an $\tilde{\mathcal{O}}(\varepsilon^{-2})$ sample complexity for a single given preference. To further reduce the cost of environment exploration under different preferences, we propose a preference-free framework that first explores the environment without pre-defined preferences and then generates solutions for any number of preferences. We prove that it only requires an $\tilde{\mathcal{O}}(\varepsilon^{-2})$ exploration complexity in the exploration phase and demands no additional exploration afterward. Lastly, we analyze the smooth Tchebycheff scalarization, an extension of Tchebycheff scalarization, which is proved to be more advantageous in distinguishing the Pareto optimal policies from other weakly Pareto optimal policies based on entry values of preference vectors. Furthermore, we extend our algorithms and theoretical analysis to accommodate this optimization target.
Related papers
- Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
No single solution exists that can optimize all the objectives simultaneously.
In a typical MOO problem, the goal is to find a set of optimum solutions (Pareto set) that trades off the preferences among objectives.
Our formulation leads to a bilevel optimization problem that can be solved by e.g. differentiable cross-entropy methods.
arXiv Detail & Related papers (2024-08-19T13:23:07Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
We design a low-switching sample-efficient policy optimization algorithm, LPO, with general non-linear function approximation.
We show that, our algorithm obtains an $varepsilon$-optimal policy with only $widetildeO(fractextpoly(d)varepsilon3)$ samples.
arXiv Detail & Related papers (2023-06-15T23:51:46Z) - Optimistic Natural Policy Gradient: a Simple Efficient Policy
Optimization Framework for Online RL [23.957148537567146]
This paper proposes a simple efficient policy optimization framework -- Optimistic NPG for online RL.
For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $varepsilon$-optimal policy within $tildeO(d2/varepsilon3)$ samples.
arXiv Detail & Related papers (2023-05-18T15:19:26Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Policy Optimization for Stochastic Shortest Path [43.2288319750466]
We study policy optimization for the shortest path (SSP) problem.
We propose a goal-oriented reinforcement learning model that strictly generalizes the finite-horizon model.
For most settings, our algorithm is shown to achieve a near-optimal regret bound.
arXiv Detail & Related papers (2022-02-07T16:25:14Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - On the Convergence and Sample Efficiency of Variance-Reduced Policy
Gradient Method [38.34416337932712]
Policy gives rise to a rich class of reinforcement learning (RL) methods, for example the REINFORCE.
Yet the best known sample complexity result for such methods to find an $epsilon$-optimal policy is $mathcalO(epsilon-3)$, which is suboptimal.
We study the fundamental convergence properties and sample efficiency of first-order policy optimization method.
arXiv Detail & Related papers (2021-02-17T07:06:19Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.