論文の概要: Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling
- arxiv url: http://arxiv.org/abs/2407.17493v3
- Date: Fri, 06 Jun 2025 22:43:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:08.804041
- Title: Model Collapse in the Self-Consuming Chain of Diffusion Finetuning: A Novel Perspective from Quantitative Trait Modeling
- Title(参考訳): 拡散微細加工の自己消費鎖におけるモデル崩壊 : 定量的トレートモデリングからの新しい視点
- Authors: Youngseok Yoon, Dainong Hu, Iain Weissburg, Yao Qin, Haewon Jeong,
- Abstract要約: 本稿では,事前に訓練されたテキスト-画像拡散モデルが生成した画像に基づいて微調整される拡散の連鎖について検討する。
画像品質の悪化は普遍的であり,このモデル崩壊に影響を及ぼす要因としてCFGスケールを同定した。
本稿では,遺伝子変異に触発された簡便かつ効果的な方法として,再利用可能な拡散微細構造(ReDiFine)を提案する。
- 参考スコア(独自算出の注目度): 10.159932782892865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model collapse, the severe degradation of generative models when iteratively trained on their own outputs, has gained significant attention in recent years. This paper examines Chain of Diffusion, where a pretrained text-to-image diffusion model is finetuned on its own generated images. We demonstrate that severe image quality degradation was universal and identify CFG scale as the key factor impacting this model collapse. Drawing on an analogy between the Chain of Diffusion and biological evolution, we then introduce a novel theoretical analysis based on quantitative trait modeling from statistical genetics. Our theoretical analysis aligns with empirical observations of the generated images in the Chain of Diffusion. Finally, we propose Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired by genetic mutations. It operates robustly across various scenarios without requiring any hyperparameter tuning, making it a plug-and-play solution for reusable image generation.
- Abstract(参考訳): 近年, モデル崩壊(モデル崩壊, モデル崩壊)が注目されている。
本稿では,事前に訓練されたテキスト-画像拡散モデルが生成した画像に基づいて微調整される拡散の連鎖について検討する。
画像品質の悪化は普遍的であり,このモデル崩壊に影響を及ぼす要因としてCFGスケールを同定した。
拡散の連鎖と生物学的進化の類似性に基づいて、統計遺伝学の量的特性モデリングに基づく新しい理論的解析を導入する。
我々の理論的解析は拡散の連鎖における生成した画像の経験的観察と一致している。
最後に,遺伝子変異に触発された簡便かつ効果的な方法であるReuseable Diffusion Finetuning(ReDiFine)を提案する。
ハイパーパラメータチューニングを必要とせずに、さまざまなシナリオに対して堅牢に動作し、再利用可能なイメージ生成のためのプラグイン・アンド・プレイソリューションとなる。
関連論文リスト
- One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
異常検出法は拡散モデルを用いて任意の異常画像が与えられたときの正常サンプルの生成または再構成を行う。
われわれは,拡散モデルが「重度忠実幻覚」と「破滅的な忘れ」に悩まされていることを発見した。
本研究では,安定な連続学習を実現するために勾配予測を用いた連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-27T07:47:27Z) - DeltaDiff: Reality-Driven Diffusion with AnchorResiduals for Faithful SR [10.790771977682763]
拡散過程を制約する新しいフレーム・ワークであるDeltaDiffを提案する。
提案手法は最先端のモデルを超え,忠実度を向上した再侮辱を生成する。
この研究は、画像再構成タスクに拡散モデルを適用するための、新しい低ランク制約パラパラダイムを確立する。
論文 参考訳(メタデータ) (2025-02-18T06:07:14Z) - Progressive Compression with Universally Quantized Diffusion Models [35.199627388957566]
プログレッシブコーディングのための拡散モデルの可能性を探り、インクリメンタルに伝送および復号化が可能なビット列を導出する。
ガウス拡散モデルや条件付き拡散モデルに基づく先行研究とは異なり、前処理における一様雑音を伴う新しい拡散モデルを提案する。
画像圧縮において有望な第一結果が得られ、単一のモデルで幅広いビットレートで競合速度歪みとレートリアリズムが達成される。
論文 参考訳(メタデータ) (2024-12-14T19:06:01Z) - An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis [8.01395073111961]
我々は、GeCA(Generative Cellular Automata)と呼ばれる新しいモデルのファミリーを紹介する。
GeCAは2つの画像モダリティ(Fundus and Optical Coherence Tomography, OCT)にまたがる網膜疾患分類の効果的な拡張ツールとして評価される
データが不足し,クラス分布が本質的に歪んでいるOCT画像の文脈では,GeCAは11種類の眼科領域の性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-07-03T11:26:09Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
本研究では,データキュレーションが生成モデルの反復的再学習に与える影響について検討する。
報奨モデルに従ってデータをキュレートすると、反復的再訓練手順の期待報酬が最大になることを示す。
論文 参考訳(メタデータ) (2024-06-12T21:28:28Z) - Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
本研究は,拡散を用いた量子化誤差の除去をデノナイジングタスクとして定式化し,送信された遅延画像の損失情報を復元する。
当社のアプローチでは,完全な拡散生成プロセスの10%未満の実行が可能であり,拡散モデルにアーキテクチャ的な変更は不要である。
論文 参考訳(メタデータ) (2024-04-12T16:23:42Z) - Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized
Control [54.132297393662654]
拡散モデルは、自然画像やタンパク質のような複雑なデータ分布を捉えるのに優れている。
拡散モデルはトレーニングデータセットの分布を表現するために訓練されるが、私たちはしばしば、生成された画像の美的品質など他の特性にもっと関心を持っている。
本稿では,本フレームワークが真に報酬の高い多種多様なサンプルを効率よく生成できることを示す理論的,実証的な証拠を示す。
論文 参考訳(メタデータ) (2024-02-23T08:54:42Z) - Text Diffusion with Reinforced Conditioning [92.17397504834825]
本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
そこで本研究では, TRECと呼ばれる新しいテキスト拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T09:24:02Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - Deep Equilibrium Approaches to Diffusion Models [1.4275201654498746]
拡散に基づく生成モデルは高品質な画像を生成するのに極めて効果的である。
これらのモデルは通常、高忠実度画像を生成するために長いサンプリングチェーンを必要とする。
我々は、異なる観点からの拡散モデル、すなわち(深い)平衡(DEQ)固定点モデルについて考察する。
論文 参考訳(メタデータ) (2022-10-23T22:02:19Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。