Supersolidity and Simplex Phases in Spin-1 Rydberg Atom Arrays
- URL: http://arxiv.org/abs/2407.17554v1
- Date: Wed, 24 Jul 2024 18:00:01 GMT
- Title: Supersolidity and Simplex Phases in Spin-1 Rydberg Atom Arrays
- Authors: Vincent S. Liu, Marcus Bintz, Maxwell Block, Rhine Samajdar, Jack Kemp, Norman Y. Yao,
- Abstract summary: strongly correlated quantum phases of matter emerge in two-dimensional atom arrays.
We identify a wealth of correlated states, including lattice supersolids and simplex phases, which can be naturally realized in near-term experiments.
- Score: 0.8246494848934447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neutral atoms become strongly interacting when their electrons are excited to loosely bound Rydberg states. We investigate the strongly correlated quantum phases of matter that emerge in two-dimensional atom arrays where three Rydberg levels are used to encode an effective spin-1 degree of freedom. Dipolar exchange between such spin-1 Rydberg atoms naturally yields two distinct models: (i) a two-species hardcore boson model, and (ii) upon tuning near a F\"orster resonance, a dipolar spin-1 XY model. Through extensive, large-scale infinite density matrix renormalization group calculations, we provide a broad roadmap predicting the quantum phases that emerge from these models on a variety of lattice geometries: square, triangular, kagome, and ruby. We identify a wealth of correlated states, including lattice supersolids and simplex phases, all of which can be naturally realized in near-term experiments.
Related papers
- Supersolidity in Rydberg tweezer arrays [0.41232474244672235]
Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former.
For repulsive interactions, we predict the existence of a robust supersolid phase in current Rydberg tweezer experiments.
arXiv Detail & Related papers (2024-07-17T17:21:30Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Trimer quantum spin liquid in a honeycomb array of Rydberg atoms [0.0]
We show the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms.
In the regime where third-nearest-neighbor atoms lie within the Rydberg blockade, we find a novel ground state.
The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation.
arXiv Detail & Related papers (2022-11-01T18:00:00Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Quantum phase transition of the two-dimensional Rydberg atom array in an
optical cavity [5.551635299693738]
We study the two-dimensional Rydberg atom array in an optical cavity with help of the meanfield theory and the large-scale quantum Monte Carlo simulations.
The interplay between them provides a rich quantum phase diagram including the Mott, solid-1/2, superradiant and superradiant solid phases.
arXiv Detail & Related papers (2022-04-19T10:49:57Z) - Quantum spin liquids bootstrapped from Ising criticality in Rydberg
arrays [10.616940219574778]
We develop a new strategy for accessing a family of fractionalized phases known as quantum spin liquids in Rydberg arrays.
We specifically use effective field theory methods to study arrays assembled from Rydberg chains tuned to an Ising phase transition.
Our work suggests that appropriately tuned Rydberg arrays provide a cold-atoms counterpart of solid-state 'Kitaev materials'
arXiv Detail & Related papers (2022-03-31T18:00:00Z) - Spontaneous decay induced quantum dynamics in Rydberg blockaded
{\Lambda}-type atoms [0.0]
Rydberg-blockaded two-level atoms form a Rydberg superatom.
spontaneous decay from the Rydberg state to an additional pooling state renders the ensemble no longer a closed superatom.
We present a computationally-efficient model to characterize the interaction between a fully Rydberg-blockaded ensemble of $N$ $Lambda$-type three-level atoms.
arXiv Detail & Related papers (2021-12-18T11:01:32Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.