Supersolidity in Rydberg tweezer arrays
- URL: http://arxiv.org/abs/2407.12752v2
- Date: Wed, 31 Jul 2024 12:31:53 GMT
- Title: Supersolidity in Rydberg tweezer arrays
- Authors: Lukas Homeier, Simon Hollerith, Sebastian Geier, Neng-Chun Chiu, Antoine Browaeys, Lode Pollet,
- Abstract summary: Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former.
For repulsive interactions, we predict the existence of a robust supersolid phase in current Rydberg tweezer experiments.
- Score: 0.41232474244672235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions. Here, we propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former, realizing an extended Hubbard model with long-range tunnelings in optical tweezer arrays. For repulsive interactions, we predict the existence of a robust supersolid phase accessible in current Rydberg tweezer experiments on the triangular lattice supported by large-scale quantum Monte Carlo simulations based on explicitly calculated pair interactions for ${}^{87}$Rb and with a critical entropy per particle $S/N \approx 0.19$. Such a lattice supersolid is long-lived, found over a wide parameter range in an isotropic and flat two-dimensional geometry, and can be realized for 100s of particles. Its thermodynamical and dynamical properties can hence be studied at a far larger scale than hitherto possible.
Related papers
- Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Supersolidity and Simplex Phases in Spin-1 Rydberg Atom Arrays [0.8246494848934447]
strongly correlated quantum phases of matter emerge in two-dimensional atom arrays.
We identify a wealth of correlated states, including lattice supersolids and simplex phases, which can be naturally realized in near-term experiments.
arXiv Detail & Related papers (2024-07-24T18:00:01Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Resonance energies and linewidths of Rydberg excitons in Cu$_2$O quantum wells [0.0]
Rydberg excitons are the solid-state analog of Rydberg atoms and can easily reach a large size in the region of $mu$m.
The fabrication of quantum well-like structures in the crystal leads to quantum confinement effects.
arXiv Detail & Related papers (2024-04-04T19:53:18Z) - Simulating a two component Bose-Hubbard model with imbalanced hopping in a Rydberg tweezer array [0.20971479389679332]
We simulate a two-component Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms.
We show how multilevel Rydberg atoms provide an opportunity to explore the diverse non-equilibrium quench dynamics of the model.
arXiv Detail & Related papers (2023-12-22T17:19:36Z) - Quantum phases of hardcore bosons with repulsive dipolar density-density interactions on two-dimensional lattices [0.0]
bosons dynamics is described by the extended-Bose-Hubbard Hamiltonian on a two-dimensional lattice.
We consider three different lattice geometries: square, honeycomb, and triangular.
Our results are of immediate relevance for experimental realisations of self-organised crystalline ordering patterns in analogue quantum simulators.
arXiv Detail & Related papers (2023-11-17T16:35:02Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.