SAfEPaTh: A System-Level Approach for Efficient Power and Thermal Estimation of Convolutional Neural Network Accelerator
- URL: http://arxiv.org/abs/2407.17623v1
- Date: Wed, 24 Jul 2024 20:29:52 GMT
- Title: SAfEPaTh: A System-Level Approach for Efficient Power and Thermal Estimation of Convolutional Neural Network Accelerator
- Authors: Yukai Chen, Simei Yang, Debjyoti Bhattacharjee, Francky Catthoor, Arindam Mallik,
- Abstract summary: This paper introduces SAfEPaTh, a novel system-level approach for accurately estimating power and temperature in tile-based CNN accelerators.
By addressing both steady-state and transient-state scenarios, SAfEPaTh effectively captures the dynamic effects of pipeline bubbles in interlayer pipelines.
- Score: 4.1221717424687165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design of energy-efficient, high-performance, and reliable Convolutional Neural Network (CNN) accelerators involves significant challenges due to complex power and thermal management issues. This paper introduces SAfEPaTh, a novel system-level approach for accurately estimating power and temperature in tile-based CNN accelerators. By addressing both steady-state and transient-state scenarios, SAfEPaTh effectively captures the dynamic effects of pipeline bubbles in interlayer pipelines, utilizing real CNN workloads for comprehensive evaluation. Unlike traditional methods, it eliminates the need for circuit-level simulations or on-chip measurements. Our methodology leverages TANIA, a cutting-edge hybrid digital-analog tile-based accelerator featuring analog-in-memory computing cores alongside digital cores. Through rigorous simulation results using the ResNet18 model, we demonstrate SAfEPaTh's capability to accurately estimate power and temperature within 500 seconds, encompassing CNN model accelerator mapping exploration and detailed power and thermal estimations. This efficiency and accuracy make SAfEPaTh an invaluable tool for designers, enabling them to optimize performance while adhering to stringent power and thermal constraints. Furthermore, SAfEPaTh's adaptability extends its utility across various CNN models and accelerator architectures, underscoring its broad applicability in the field. This study contributes significantly to the advancement of energy-efficient and reliable CNN accelerator designs, addressing critical challenges in dynamic power and thermal management.
Related papers
- Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) emerges as a promising architecture to coordinate the computing capability of satellites and enable on board data processing.
We propose to employ spiking neural networks (SNNs), which is supported by the neuromorphic computing architecture, for on-board data processing.
We put forward a decentralized neuromorphic learning framework, where a communication-efficient inter-plane model aggregation method is developed.
arXiv Detail & Related papers (2025-01-27T12:29:47Z) - Combining Aggregated Attention and Transformer Architecture for Accurate and Efficient Performance of Spiking Neural Networks [44.145870290310356]
Spiking Neural Networks have attracted significant attention in recent years due to their distinctive low-power characteristics.
Transformers models, known for their powerful self-attention mechanisms and parallel processing capabilities, have demonstrated exceptional performance across various domains.
Despite the significant advantages of both SNNs and Transformers, directly combining the low-power benefits of SNNs with the high performance of Transformers remains challenging.
arXiv Detail & Related papers (2024-12-18T07:07:38Z) - Revisiting DNN Training for Intermittently-Powered Energy-Harvesting Micro-Computers [0.6721767679705013]
This study introduces and evaluates a novel training methodology tailored for Deep Neural Networks in energy-constrained environments.
We propose a dynamic dropout technique that adapts to both the architecture of the device and the variability in energy availability.
Preliminary results demonstrate that this strategy provides 6 to 22 percent accuracy improvements compared to the state of the art with less than 5 percent additional compute.
arXiv Detail & Related papers (2024-08-25T01:13:00Z) - Physics-informed Convolutional Neural Network for Microgrid Economic Dispatch [1.5193212081459277]
This study proposes using a convolutional neural network (CNN) based on deep learning to solve numerical optimization problems in real-time.
CNN is more efficient, delivers more dependable results, and has a shorter response time when dealing with uncertainties.
A physics-inspired CNN model is developed by incorporating constraints of the ED problem into the CNN training to ensure that the model follows physical laws while fitting the data.
arXiv Detail & Related papers (2024-04-29T02:02:33Z) - Investigation of Energy-efficient AI Model Architectures and Compression Techniques for "Green" Fetal Brain Segmentation [42.52549987351643]
Fetal brain segmentation in medical imaging is challenging due to the small size of the fetal brain and the limited image quality of fast 2D sequences.
Deep neural networks are a promising method to overcome this challenge.
Our study aims to explore model architectures and compression techniques that promote energy efficiency.
arXiv Detail & Related papers (2024-04-03T15:11:53Z) - Measuring the Energy Consumption and Efficiency of Deep Neural Networks:
An Empirical Analysis and Design Recommendations [0.49478969093606673]
BUTTER-E dataset is an augmentation to the BUTTER Empirical Deep Learning dataset.
This dataset reveals the complex relationship between dataset size, network structure, and energy use.
We propose a straightforward and effective energy model that accounts for network size, computing, and memory hierarchy.
arXiv Detail & Related papers (2024-03-13T00:27:19Z) - Data-driven Energy Efficiency Modelling in Large-scale Networks: An Expert Knowledge and ML-based Approach [8.326834499339107]
This paper introduces the simulated reality of communication networks (SRCON) framework.
It harnesses live network data and employs a blend of machine learning (ML)- and expert-based models.
Results show significant gains over a state-of-the art method used by a operator for network energy efficiency modeling.
arXiv Detail & Related papers (2023-12-31T10:03:08Z) - SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFP devices serve as excellent carriers for binary neural network (BNN) computations.
We propose SupeRBNN, an AQFP-based randomized BNN acceleration framework.
We show that our design achieves an energy efficiency of approximately 7.8x104 times higher than that of the ReRAM-based BNN framework.
arXiv Detail & Related papers (2023-09-21T16:14:42Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
Neural network and deep learning has been started to impact the present research paradigm.
DSP processors are incapable of performing neural network, activation function, convolutional neural network and generative adversarial network operations.
Different algorithms have been adapted to design a DSP processor compatible for fast performance in neural network, activation function, convolutional neural network and generative adversarial network.
arXiv Detail & Related papers (2021-06-06T13:23:06Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.