Energy efficiency analysis of Spiking Neural Networks for space applications
- URL: http://arxiv.org/abs/2505.11418v1
- Date: Fri, 16 May 2025 16:29:50 GMT
- Title: Energy efficiency analysis of Spiking Neural Networks for space applications
- Authors: Paolo Lunghi, Stefano Silvestrini, Dominik Dold, Gabriele Meoni, Alexander Hadjiivanov, Dario Izzo,
- Abstract summary: Spiking Neural Networks (SNN) are highly attractive due to their theoretically superior energy efficiency.<n>This work presents a numerical analysis and comparison of different SNN techniques applied to scene classification for the EuroSAT dataset.
- Score: 43.91307921405309
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the exponential growth of the space sector and new operative concepts ask for higher spacecraft autonomy, the development of AI-assisted space systems was so far hindered by the low availability of power and energy typical of space applications. In this context, Spiking Neural Networks (SNN) are highly attractive due to their theoretically superior energy efficiency due to their inherently sparse activity induced by neurons communicating by means of binary spikes. Nevertheless, the ability of SNN to reach such efficiency on real world tasks is still to be demonstrated in practice. To evaluate the feasibility of utilizing SNN onboard spacecraft, this work presents a numerical analysis and comparison of different SNN techniques applied to scene classification for the EuroSAT dataset. Such tasks are of primary importance for space applications and constitute a valuable test case given the abundance of competitive methods available to establish a benchmark. Particular emphasis is placed on models based on temporal coding, where crucial information is encoded in the timing of neuron spikes. These models promise even greater efficiency of resulting networks, as they maximize the sparsity properties inherent in SNN. A reliable metric capable of comparing different architectures in a hardware-agnostic way is developed to establish a clear theoretical dependence between architecture parameters and the energy consumption that can be expected onboard the spacecraft. The potential of this novel method and his flexibility to describe specific hardware platforms is demonstrated by its application to predicting the energy consumption of a BrainChip Akida AKD1000 neuromorphic processor.
Related papers
- Analyzing Internal Activity and Robustness of SNNs Across Neuron Parameter Space [0.08192907805418582]
Spiking Neural Networks (SNNs) offer energy-efficient alternatives to traditional artificial neural networks.<n>We characterize an operational space within which the network exhibits meaningful activity and functional behavior.<n>Our results offer practical guidelines for deploying robust and efficient SNNs.
arXiv Detail & Related papers (2025-07-19T21:13:53Z) - SpikeX: Exploring Accelerator Architecture and Network-Hardware Co-Optimization for Sparse Spiking Neural Networks [3.758294848902233]
We propose a novel systolic-array SNN accelerator architecture, called SpikeX, to take on the challenges and opportunities stemming from unstructured sparsity.<n>SpikeX reduces memory access and increases data sharing and hardware utilization targeting computations spanning both time and space.
arXiv Detail & Related papers (2025-05-18T08:07:44Z) - Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) emerges as a promising architecture to coordinate the computing capability of satellites and enable on board data processing.<n>We propose to employ spiking neural networks (SNNs), which is supported by the neuromorphic computing architecture, for on-board data processing.<n>We put forward a decentralized neuromorphic learning framework, where a communication-efficient inter-plane model aggregation method is developed.
arXiv Detail & Related papers (2025-01-27T12:29:47Z) - Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
Spiking Neural Networks (SNNs) leverage sparse spikes to represent information and process them in an event-driven manner.<n>We introduce a lightweight and hardware-friendly Quantized SNN that applies quantization to both synaptic weights and membrane potentials.<n>We present a new Weight-Spike Dual Regulation (WS-DR) method inspired by information entropy theory.
arXiv Detail & Related papers (2024-06-19T16:23:26Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
This paper presents an innovative methodology for improving the robustness and computational efficiency of Spiking Neural Networks (SNNs)
The proposed approach integrates astrocytes, a type of glial cell prevalent in the human brain, into SNNs, creating astrocyte-augmented networks.
Notably, our astrocyte-augmented SNN displays near-zero latency and theoretically infinite throughput, implying exceptional computational efficiency.
arXiv Detail & Related papers (2023-09-15T08:02:29Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.