論文の概要: Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings
- arxiv url: http://arxiv.org/abs/2407.17624v1
- Date: Wed, 24 Jul 2024 20:30:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:57:05.144712
- Title: Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings
- Title(参考訳): クレジットレーティング予測におけるジェネレーティブLLMの性能向上手法
- Authors: Felix Drinkall, Janet B. Pierrehumbert, Stefan Zohren,
- Abstract要約: 大規模言語モデル(LLM)は多くの下流タスクでうまく機能することが示されている。
本稿では,企業信用格付け予測におけるLCMの業績について検討する。
- 参考スコア(独自算出の注目度): 17.109522466982476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been shown to perform well for many downstream tasks. Transfer learning can enable LLMs to acquire skills that were not targeted during pre-training. In financial contexts, LLMs can sometimes beat well-established benchmarks. This paper investigates how well LLMs perform in the task of forecasting corporate credit ratings. We show that while LLMs are very good at encoding textual information, traditional methods are still very competitive when it comes to encoding numeric and multimodal data. For our task, current LLMs perform worse than a more traditional XGBoost architecture that combines fundamental and macroeconomic data with high-density text-based embedding features.
- Abstract(参考訳): 大規模言語モデル(LLM)は多くの下流タスクでうまく機能することが示されている。
トランスファーラーニングは、LLMが事前トレーニング中にターゲットにならなかったスキルを習得することを可能にする。
金融の文脈では、LLMはよく確立されたベンチマークに打ち勝つことがある。
本稿では,企業信用格付け予測におけるLCMの業績について検討する。
LLMはテキスト情報の符号化に優れていますが、数値やマルチモーダルデータの符号化に関しては、従来の手法は依然として非常に競争力があります。
我々のタスクでは、基本データとマクロ経済データと高密度テキストベースの埋め込み機能を組み合わせた従来のXGBoostアーキテクチャよりも性能が劣る。
関連論文リスト
- Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
大規模言語モデル (LLM) と事前訓練型言語モデル (LM) は多くのソフトウェア工学のタスクにおいて驚くべき成功を収めた。
我々は、LLMを用いてドメイン固有のデータを生成し、目標タスクにおける事前学習されたLMの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-16T06:37:59Z) - Large Language Models as Reliable Knowledge Bases? [60.25969380388974]
大きな言語モデル(LLM)は潜在的な知識ベース(KB)と見なすことができる。
本研究は、信頼性の高いLLM-as-KBが満たすべき基準を定義し、事実性と一貫性に焦点をあてる。
ICLや微調整のような戦略は、LLMをより良くKBにするには失敗している。
論文 参考訳(メタデータ) (2024-07-18T15:20:18Z) - Decoding with Limited Teacher Supervision Requires Understanding When to Trust the Teacher [11.136112399898481]
小規模大規模言語モデル(LLM)は、LLMの監督を効果的に活用して、その生成品質を向上するにはどうすればよいのか?
我々は,初期トークン上でのLLMおよびLLM予測を効果的に集約するアルゴリズムを開発した。
提案手法は,従来の復号法よりも一貫した手法であることを示す。
論文 参考訳(メタデータ) (2024-06-26T01:16:12Z) - REQUAL-LM: Reliability and Equity through Aggregation in Large Language Models [10.684722193666607]
本稿では,信頼度の高い大規模言語モデル (LLM) の出力をアグリゲーションによって検出する新しい手法であるREQUAL-LMを紹介する。
具体的には、繰り返しサンプリングに基づくモンテカルロ法を開発し、可能な出力の基底分布の平均に近い信頼性のある出力を求める。
信頼性とバイアスといった用語を正式に定義し、信頼性の高いアウトプットを見つけながら有害なバイアスを最小限に抑えるために、株式を意識したアグリゲーションを設計する。
論文 参考訳(メタデータ) (2024-04-17T22:12:41Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Mutual Enhancement of Large and Small Language Models with Cross-Silo
Knowledge Transfer [27.63746419563747]
大規模言語モデル (LLM) には幅広い知識が与えられているが、そのタスク固有の性能は、しばしば準最適である。
タスク固有のデータで微調整 LLM を必要とするが、プライバシー上の懸念からアクセスできない可能性がある。
本研究では,より小さな言語モデル (SLM) でLLMを強化し,クライアント上でプライベートなタスク固有データを用いて学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-10T09:52:32Z) - A Survey of Large Language Models for Code: Evolution, Benchmarking, and
Future Trends [30.774685501251817]
一般的な大規模言語モデル(LLM)は、ソフトウェア工学におけるコード生成のようなタスクにおいて大きな可能性を証明している。
コードLLMのかなりの部分は、モデルファインチューニングを通じて一般的なLLMから派生している。
現在、Code LLMとそのパフォーマンスに関する体系的な調査が欠如している。
論文 参考訳(メタデータ) (2023-11-17T07:55:16Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。