論文の概要: Revising the Problem of Partial Labels from the Perspective of CNNs' Robustness
- arxiv url: http://arxiv.org/abs/2407.17630v1
- Date: Wed, 24 Jul 2024 20:39:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:57:05.136491
- Title: Revising the Problem of Partial Labels from the Perspective of CNNs' Robustness
- Title(参考訳): CNNのロバスト性からみた部分ラベル問題の再検討
- Authors: Xin Zhang, Yuqi Song, Wyatt McCurdy, Xiaofeng Wang, Fei Zuo,
- Abstract要約: 擬似ラベル手法と設計された損失関数を用いた軽量な部分ラベル解を提案する。
提案手法と既存手法の両方をD-Scoreを用いて解析し,精度を向上しながら頑健性を向上できるかどうかを判定する。
- 参考スコア(独自算出の注目度): 6.46250754192468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have gained increasing popularity and versatility in recent decades, finding applications in diverse domains. These remarkable achievements are greatly attributed to the support of extensive datasets with precise labels. However, annotating image datasets is intricate and complex, particularly in the case of multi-label datasets. Hence, the concept of partial-label setting has been proposed to reduce annotation costs, and numerous corresponding solutions have been introduced. The evaluation methods for these existing solutions have been primarily based on accuracy. That is, their performance is assessed by their predictive accuracy on the test set. However, we insist that such an evaluation is insufficient and one-sided. On one hand, since the quality of the test set has not been evaluated, the assessment results are unreliable. On the other hand, the partial-label problem may also be raised by undergoing adversarial attacks. Therefore, incorporating robustness into the evaluation system is crucial. For this purpose, we first propose two attack models to generate multiple partial-label datasets with varying degrees of label missing rates. Subsequently, we introduce a lightweight partial-label solution using pseudo-labeling techniques and a designed loss function. Then, we employ D-Score to analyze both the proposed and existing methods to determine whether they can enhance robustness while improving accuracy. Extensive experimental results demonstrate that while certain methods may improve accuracy, the enhancement in robustness is not significant, and in some cases, it even diminishes.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、近年人気を高め、多様なドメインで応用されている。
これらの顕著な成果は、正確なラベルを持つ広範なデータセットのサポートに大きく貢献している。
しかし、特にマルチラベルデータセットの場合、画像データセットの注釈付けは複雑で複雑である。
したがって、アノテーションコストを削減するために部分ラベル設定の概念が提案され、多くの対応するソリューションが導入された。
これらの既存ソリューションの評価方法は、主に精度に基づいている。
つまり、彼らのパフォーマンスは、テストセットの予測精度によって評価されます。
しかし、このような評価は不十分であり一方的なものであると主張する。
一方、テストセットの品質は評価されていないため、評価結果は信頼性が低い。
一方、部分ラベル問題は敵攻撃によっても引き起こされる可能性がある。
したがって、評価システムにロバストさを取り入れることが重要である。
そこで我々はまず,ラベルの欠落率の異なる複数の部分ラベルデータセットを生成する2つの攻撃モデルを提案する。
次に,擬似ラベル手法と設計された損失関数を用いた軽量な部分ラベル解を提案する。
そこで,提案手法と既存手法の両方をD-Scoreを用いて解析し,精度を向上しながら頑健性を向上できるかどうかを判定する。
大規模な実験の結果、ある方法によって精度が向上するが、ロバスト性の向上は重要ではなく、場合によっては低下する。
関連論文リスト
- Investigating the Impact of Hard Samples on Accuracy Reveals In-class Data Imbalance [4.291589126905706]
AutoMLドメインでは、モデルの有効性を評価するための重要な指標として、テスト精度が宣言される。
しかし、主性能指標としての試験精度の信頼性は疑問視されている。
トレーニングセットとテストセット間のハードサンプルの分布は、これらのセットの難易度に影響を与える。
本稿では,ハードサンプル識別法を比較するためのベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T11:38:14Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
半教師付きオブジェクト検出(SSOD)は、擬似ラベルに基づくエンドツーエンド手法の開発において大きな進歩を遂げている。
多くの手法は、擬似ラベルジェネレータの有効性を妨げるクラス不均衡のため、課題に直面している。
本稿では,低品質な擬似ラベルの根本原因と,ラベル生成品質を改善するための新しい学習メカニズムについて検討する。
論文 参考訳(メタデータ) (2023-06-04T06:01:53Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
我々は,半教師付き回帰,すなわち不確実連続変分モデル組立(UCVME)に対する新しいアプローチを提案する。
整合性損失は不確実性評価を著しく改善し,不整合回帰の下では,高品質な擬似ラベルをより重要視することができる。
実験の結果,本手法は様々なタスクにおける最先端の代替手段よりも優れており,フルラベルを用いた教師付き手法と競合する可能性が示唆された。
論文 参考訳(メタデータ) (2023-02-15T10:40:51Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
本稿では, サンプル重み付けを統一した定式化により, 一般的な擬似ラベル法を再検討する。
トレーニング中の擬似ラベルの量と質を両立させることでトレードオフを克服するSoftMatchを提案する。
実験では、画像、テキスト、不均衡な分類など、さまざまなベンチマークで大幅に改善されている。
論文 参考訳(メタデータ) (2023-01-26T03:53:25Z) - Combating noisy labels in object detection datasets [0.0]
本稿では,オブジェクト検出データセットにおける各ラベルの品質を評価するためのCLODアルゴリズムを提案する。
欠落した、突発的で、ラベルが間違えた、そして誤配置されたバウンディングボックスを特定し、修正を提案する。
提案手法は, 擬陽性率0.1未満の人工乱れ箱の80%近くを指摘できる。
論文 参考訳(メタデータ) (2022-11-25T10:05:06Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
近年のSemi-Supervised Object Detection (SS-OD) 法は主に自己学習に基づいており、教師モデルにより、ラベルなしデータを監視信号としてハードな擬似ラベルを生成する。
実験結果から,これらの手法が直面する課題を分析した。
本稿では,大規模オブジェクトサイズの分散とクラス不均衡に頑健な簡易かつ効果的なエンド・ツー・エンド知識蒸留フレームワークであるSED(Scale-Equivalent Distillation)を提案する。
論文 参考訳(メタデータ) (2022-03-23T07:33:37Z) - Active Learning by Feature Mixing [52.16150629234465]
本稿では,ALFA-Mixと呼ばれるバッチ能動学習手法を提案する。
予測の不整合を求めることにより,不整合な特徴を持つインスタンスを同定する。
これらの予測の不整合は、モデルが未認識のインスタンスで認識できない特徴を発見するのに役立ちます。
論文 参考訳(メタデータ) (2022-03-14T12:20:54Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。