論文の概要: Hopfield Networks for Asset Allocation
- arxiv url: http://arxiv.org/abs/2407.17645v1
- Date: Wed, 24 Jul 2024 21:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:47:21.290431
- Title: Hopfield Networks for Asset Allocation
- Title(参考訳): アセットアロケーションのためのホップフィールドネットワーク
- Authors: Carlo Nicolini, Monisha Gopalan, Jacopo Staiano, Bruno Lepri,
- Abstract要約: 本稿では,ポートフォリオ最適化問題に対する最近のホップフィールドネットワークの最初の応用について述べる。
長短項記憶ネットワークやトランスフォーマーのような最先端のディープラーニング手法と比較して,提案手法が同等以上の性能を発揮することがわかった。
- 参考スコア(独自算出の注目度): 8.26034886618475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first application of modern Hopfield networks to the problem of portfolio optimization. We performed an extensive study based on combinatorial purged cross-validation over several datasets and compared our results to both traditional and deep-learning-based methods for portfolio selection. Compared to state-of-the-art deep-learning methods such as Long-Short Term Memory networks and Transformers, we find that the proposed approach performs on par or better, while providing faster training times and better stability. Our results show that Modern Hopfield Networks represent a promising approach to portfolio optimization, allowing for an efficient, scalable, and robust solution for asset allocation, risk management, and dynamic rebalancing.
- Abstract(参考訳): 本稿では,ポートフォリオ最適化問題に対する最近のホップフィールドネットワークの最初の応用について述べる。
本研究は,複数データセットにまたがる組み合わせによるクロスバリデーションに基づく広範な研究を行い,ポートフォリオ選択のための従来の手法とディープラーニングベースの手法を比較した。
長短項記憶ネットワークやトランスフォーマーのような最先端のディープラーニング手法と比較して、提案手法はより高速なトレーニング時間とより優れた安定性を提供しながら、同等以上のパフォーマンスを実現していることがわかった。
この結果から,現代ホップフィールドネットワークはポートフォリオ最適化への有望なアプローチであり,アセットアロケーションやリスク管理,動的リバランシングといった,効率的でスケーラブルで堅牢なソリューションを実現することが示唆された。
関連論文リスト
- Improving Portfolio Optimization Results with Bandit Networks [0.0]
非定常環境向けに設計された新しいBanditアルゴリズムを導入・評価する。
まず,Adaptive Discounted Thompson Smpling (ADTS)アルゴリズムを提案する。
そこで我々は,この手法を,CADTSアルゴリズムを導入してポートフォリオ最適化問題に拡張する。
論文 参考訳(メタデータ) (2024-10-05T16:17:31Z) - Dynamic Portfolio Rebalancing: A Hybrid new Model Using GNNs and Pathfinding for Cost Efficiency [0.0]
本稿では,取引コストを予測するグラフニューラルネットワーク(GNN)と,コスト効率の高いリバランスパスを特定するDijkstraのアルゴリズムを統合することで,ポートフォリオのリバランスを最適化する新たなアプローチを提案する。
実証的な結果は、このハイブリッドアプローチが取引コストを大幅に削減し、ポートフォリオマネージャに強力なツールを提供することを示している。
論文 参考訳(メタデータ) (2024-10-02T11:00:52Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
統合アクセスとバックハウリング(IRL)は、将来の世代におけるより高いデータレートに対する前例のない要求を満たすための、実行可能なアプローチである。
本稿では,分数ノードに付随する巨大なアクション空間の問題を,Deep Q-Learning Networkを用いて処理する方法を示す。
論文 参考訳(メタデータ) (2023-08-31T21:30:25Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
マルチモーダル相互情報事前学習(M3I事前学習)を最大化するオールインワン単段階事前学習手法を提案する。
提案手法は,ImageNet分類,オブジェクト検出,LVIS長鎖オブジェクト検出,ADE20kセマンティックセマンティックセマンティックセマンティクスなど,様々なビジョンベンチマークにおける事前学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-17T18:59:49Z) - An intelligent algorithmic trading based on a risk-return reinforcement
learning algorithm [0.0]
本稿では,改良された深部強化学習アルゴリズムを用いたポートフォリオ最適化モデルを提案する。
提案アルゴリズムはアクター・クリティカル・アーキテクチャに基づいており、クリティカル・ネットワークの主な課題はポートフォリオ累積リターンの分布を学習することである。
Ape-xと呼ばれるマルチプロセスを用いて、深層強化学習訓練の高速化を図る。
論文 参考訳(メタデータ) (2022-08-23T03:20:06Z) - Auto-Transfer: Learning to Route Transferrable Representations [77.30427535329571]
本稿では,適切なターゲット表現にソース表現をルートする方法を自動学習する,新しい対向型マルチアームバンディット手法を提案する。
最先端の知識伝達手法と比較すると,5%以上の精度向上が期待できる。
論文 参考訳(メタデータ) (2022-02-02T13:09:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Efficient Multi-Objective Optimization for Deep Learning [2.0305676256390934]
マルチオブジェクト最適化(MOO)はディープラーニングの一般的な課題です。
真に深いニューラルネットワークのためのスケーラブルなMOOソリューションはありません。
論文 参考訳(メタデータ) (2021-03-24T17:59:42Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
オールオンス量子化ネットワークを効率的にトレーニングするための新しい共同知識伝達アプローチを開発しています。
具体的には、低精度の学生に知識を伝達するための高精度のエンクォータを選択するための適応的選択戦略を提案する。
知識を効果的に伝達するために,低精度の学生ネットワークのブロックを高精度の教師ネットワークのブロックにランダムに置き換える動的ブロックスワッピング法を開発した。
論文 参考訳(メタデータ) (2021-03-02T03:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。