論文の概要: Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2503.13544v5
- Date: Fri, 01 Aug 2025 03:58:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 20:08:55.427522
- Title: Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization
- Title(参考訳): 深層アンサンブルを用いた教師付き学習による決定:ロバストポートフォリオ最適化のための実践的フレームワーク
- Authors: Juhyeong Kim, Sungyoon Choi, Youngbin Lee, Yejin Kim, Yongmin Choi, Yongjae Lee,
- Abstract要約: DecisionFocused by Supervised Learningは、ロバストなポートフォリオ最適化のためのフレームワークである。
DSLはDeep Ensembleメソッドを使用し、ポートフォリオ割り当てのばらつきを大幅に低減します。
アンサンブルサイズが大きくなると、中央値のリターンが向上し、リスク調整性能が向上することを示す。
- 参考スコア(独自算出の注目度): 24.201581738408045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
- Abstract(参考訳): ポートフォリオ最適化のための実践的なフレームワークであるDSL(Supervised Learning)による決定を提案する。
DSLリフレームはポートフォリオ構築を教師付き学習問題として、最適ポートフォリオ重量を予測するために訓練され、シャープ比やソルティーノ比を最大化することで、クロスエントロピー損失とポートフォリオを構築する。
安定性と信頼性をさらに向上するため、DSLはDeep Ensembleメソッドを採用しており、ポートフォリオ割り当てのばらつきを大幅に低減している。
さまざまな市場宇宙とニューラルアーキテクチャにわたる包括的なバックテストを通じて、予測焦点学習やエンドツーエンド学習など、従来の戦略と機械学習ベースの手法の両方と比較して、優れたパフォーマンスを示している。
アンサンブルサイズが大きくなると、中央値のリターンが向上し、リスク調整性能が向上することを示す。
コードはhttps://github.com/DSLwDE/DSLwDEで入手できる。
関連論文リスト
- skfolio: Portfolio Optimization in Python [0.0]
skfolioは、ポートフォリオの構築とリスク管理のためのオープンソースのPythonライブラリである。
このライブラリは、Scikit-Lernの適合予測変換パラダイムに固執することにより、研究者や実践者がポートフォリオ最適化に機械学習を活用することができる。
論文 参考訳(メタデータ) (2025-07-05T22:08:26Z) - BOPO: Neural Combinatorial Optimization via Best-anchored and Objective-guided Preference Optimization [17.694852175354555]
Preference Optimization for Combinatorial Optimization (POCO) は、目的値を介してソリューションの選好を利用する訓練パラダイムである。
POCOはアーキテクチャに依存しないため、既存のNCOモデルとの統合を可能にし、最適化の原則として好みの最適化を確立する。
論文 参考訳(メタデータ) (2025-03-10T17:45:30Z) - Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization [29.30269598267018]
本稿では,ポートフォリオ最適化における予測と意思決定品質の重大な相違について論じる。
我々は,大規模言語モデル(LLM)の表現力を投資決定に活用する。
S&P100とDOW30データセットの実験から、私たちのモデルは最先端のディープラーニングモデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-02-02T15:45:21Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - A Margin-Maximizing Fine-Grained Ensemble Method [42.44032031918387]
マルジン最大化ファイングラインドアンサンブル法(Margin-Maximizing Fine-Grained Ensemble Method)を提案する。
少数の学習者を巧みに最適化し、一般化能力を向上させることで、大規模アンサンブルを超えるパフォーマンスを実現する。
本手法は,基礎学習者の10分の1と,他の最先端のアンサンブル手法を用いて,従来のランダム林よりも優れていた。
論文 参考訳(メタデータ) (2024-09-19T15:48:12Z) - Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
すべての目的を同時に最適化できる単一のソリューションはありません。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
論文 参考訳(メタデータ) (2024-08-19T13:23:07Z) - Hopfield Networks for Asset Allocation [8.26034886618475]
本稿では,ポートフォリオ最適化問題に対する最近のホップフィールドネットワークの最初の応用について述べる。
長短項記憶ネットワークやトランスフォーマーのような最先端のディープラーニング手法と比較して,提案手法が同等以上の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2024-07-24T21:24:00Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
既存の手法は主に、1つの報酬関数に対してLMを最適化することに集中し、それらの適応性は様々な目的に制限される。
本稿では,予測の線形結合から次のトークンを出力する復号時間アルゴリズムである$textbfmulti-objective decoding (MOD)$を提案する。
提案手法は, 自然条件下であっても, 既存のアプローチが準最適であることを示すとともに, 提案手法の最適性を保証する。
論文 参考訳(メタデータ) (2024-06-27T02:46:30Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Pruner: A Speculative Exploration Mechanism to Accelerate Tensor Program Tuning [9.730351520714699]
PrunerとMoA-Prunerは、ディープニューラルネットワークのプログラムチューニングを高速化するために提案されている。
Prunerは"Draft-then-Verify"パラダイムを用いて探索プロセスを高速化する投機的探索機構である。
MoA-PrunerがMomentum Online Adaptationを導入した。
論文 参考訳(メタデータ) (2024-02-04T06:11:12Z) - Faster Stochastic Variance Reduction Methods for Compositional MiniMax
Optimization [50.10952609321302]
合成ミニマックス最適化は、さまざまな機械学習領域において重要な課題である。
構成最小最適化の現在の方法は、最適以下の複雑さや、大きなバッチサイズに大きく依存することによって悩まされている。
本稿では,Nested STOchastic Recursive Momentum (NSTORM)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T14:57:21Z) - Symmetric Replay Training: Enhancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization [42.92248233465095]
本稿では,SRT (symmetric replay training) と呼ばれる簡易かつ効果的な手法を提案する。
提案手法は,オンラインインタラクションを伴わない対称領域の探索を促進するために,高解像度サンプルを活用する。
実世界のタスクに適用した多種多様なDRL法に対して,本手法を一貫したサンプル効率向上効果を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-06-02T05:34:01Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
組み立ては、モデルパフォーマンスを高めるための強力なテクニックであることが証明されている。
我々は,データ依存型重み付きクロスエントロピー損失を許容するフレームワークを開発した。
提案手法は、ImageNet-1K上での複数の評価指標において、両者に優れる。
論文 参考訳(メタデータ) (2022-11-18T02:00:17Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
私たちは、ディープラーニングの成功の背後にある同じスケーリングアプローチを活用して、汎用性を学びます。
私たちは、パラメータの更新を取り込み出力する小さなニューラルネットワークであるディープラーニングのためのインジェクションをトレーニングします。
学習したメタトレーニングコード、関連するトレインテストデータ、およびvelo-code.ioのベースラインを備えた広範なベンチマークスイートをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2022-11-17T18:39:07Z) - Supervised Contrastive Learning as Multi-Objective Optimization for
Fine-Tuning Large Pre-trained Language Models [3.759936323189417]
教師付きコントラスト学習(SCL)は,ほとんどの分類タスクにおいて優れた性能を発揮することが示されている。
本研究では,RoBERTa言語モデルの微調整フェーズにおける多目的最適化問題としてSCL問題を定式化する。
論文 参考訳(メタデータ) (2022-09-28T15:13:58Z) - An intelligent algorithmic trading based on a risk-return reinforcement
learning algorithm [0.0]
本稿では,改良された深部強化学習アルゴリズムを用いたポートフォリオ最適化モデルを提案する。
提案アルゴリズムはアクター・クリティカル・アーキテクチャに基づいており、クリティカル・ネットワークの主な課題はポートフォリオ累積リターンの分布を学習することである。
Ape-xと呼ばれるマルチプロセスを用いて、深層強化学習訓練の高速化を図る。
論文 参考訳(メタデータ) (2022-08-23T03:20:06Z) - Building Robust Ensembles via Margin Boosting [98.56381714748096]
敵のロバスト性においては、単一のモデルは通常、全ての敵の攻撃に対して十分な力を持っていない。
我々は最大利得のアンサンブルを学習するアルゴリズムを開発した。
提案アルゴリズムは,既存のアンサンブル技術に勝るだけでなく,エンド・ツー・エンドで訓練された大規模モデルにも勝ることを示す。
論文 参考訳(メタデータ) (2022-06-07T14:55:58Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
フェデレート学習におけるパーソナライゼーションは、モデルのバイアスをトレーディングすることで、モデルの精度を向上させることができる。
ユーザの目的の最適化として、パーソナライズされた協調学習問題を定式化する。
分散の低減のためにバイアスを最適にトレードオフできる条件について検討する。
論文 参考訳(メタデータ) (2021-11-10T22:12:52Z) - Factor Representation and Decision Making in Stock Markets Using Deep
Reinforcement Learning [1.242591017155152]
我々は,S&P500株のポートフォリオ選択を定期的に行うために,直接強化学習を用いたポートフォリオ管理システムを構築している。
その結果、市場条件と最適ポートフォリオ割り当ての効果的な学習は、平均的市場を著しく上回る可能性が示唆された。
論文 参考訳(メタデータ) (2021-08-03T21:31:46Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
対戦型トレーニングモデルの堅牢性を改善するための枠組みを提案する。
共学習のパラメータモデルの重み付けにより、提案するフレームワークは、更新方向に対するロバスト性とステップの適応性を一貫して改善する。
論文 参考訳(メタデータ) (2020-04-25T20:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。