論文の概要: Text-Driven Neural Collaborative Filtering Model for Paper Source Tracing
- arxiv url: http://arxiv.org/abs/2407.17722v1
- Date: Thu, 25 Jul 2024 02:48:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:27:36.635422
- Title: Text-Driven Neural Collaborative Filtering Model for Paper Source Tracing
- Title(参考訳): 紙ソース追跡のためのテキスト駆動型ニューラルコラボレーティブフィルタリングモデル
- Authors: Aobo Xu, Bingyu Chang, Qingpeng Liu, Ling Jian,
- Abstract要約: PST(Paper Source Tracing)タスクは、与えられた学術論文に対する重要な参照の識別を自動化することを目的としている。
KDD CUP 2024では、PSTタスクに適したレコメンデーションベースのフレームワークを設計する。
本手法は平均精度(MAP)測定値で0.37814のスコアを達成し,ベースラインモデルを上回っ,全参加チームで11位となった。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying significant references within the complex interrelations of a citation knowledge graph is challenging, which encompasses connections through citations, authorship, keywords, and other relational attributes. The Paper Source Tracing (PST) task seeks to automate the identification of pivotal references for given scholarly articles utilizing advanced data mining techniques. In the KDD CUP 2024, we design a recommendation-based framework tailored for the PST task. This framework employs the Neural Collaborative Filtering (NCF) model to generate final predictions. To process the textual attributes of the papers and extract input features for the model, we utilize SciBERT, a pre-trained language model. According to the experimental results, our method achieved a score of 0.37814 on the Mean Average Precision (MAP) metric, outperforming baseline models and ranking 11th among all participating teams. The source code is publicly available at https://github.com/MyLove-XAB/KDDCupFinal.
- Abstract(参考訳): 引用知識グラフの複雑な相互関係の中で重要な参照を識別することは困難であり、引用、著者名、キーワード、その他の関係属性を通して接続を包含する。
PST(Paper Source Tracing)タスクは,先進的なデータマイニング技術を利用した学術論文における重要な参照の識別を自動化する。
KDD CUP 2024では、PSTタスクに適したレコメンデーションベースのフレームワークを設計する。
このフレームワークでは、最終的な予測を生成するために、Neural Collaborative Filtering(NCF)モデルを採用している。
論文のテキスト属性を処理し,モデルの入力特徴を抽出するために,事前学習された言語モデルであるSciBERTを利用する。
実験結果によると,本手法は平均精度(MAP)測定値において0.37814のスコアを達成し,ベースラインモデルを上回っ,全参加チームで11位となった。
ソースコードはhttps://github.com/MyLove-XAB/KDDCupFinal.comで公開されている。
関連論文リスト
- Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - FLIP: Towards Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
本稿では,クリックスルー率(CTR)予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
具体的には、1つのモダリティ(トークンや特徴)のマスキングされたデータは、他のモダリティの助けを借りて回復し、特徴レベルの相互作用とアライメントを確立する必要がある。
3つの実世界のデータセットの実験により、FLIPはSOTAベースラインより優れており、様々なIDベースのモデルやPLMと高い互換性を持つことが示された。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - AIFB-WebScience at SemEval-2022 Task 12: Relation Extraction First --
Using Relation Extraction to Identify Entities [0.0]
本稿では,変換器に基づく言語モデルに基づくエンドツーエンドのジョイントエンティティと関係抽出手法を提案する。
実体抽出と関係抽出を連続的に行う既存手法とは対照的に,本システムは関係抽出からの情報を実体抽出に組み込む。
論文 参考訳(メタデータ) (2022-03-10T12:19:44Z) - Making a (Counterfactual) Difference One Rationale at a Time [5.97507595130844]
本研究では,人的支援を伴わない反現実的データ拡張が,セレクタの性能を向上させることができるかどうかを考察する。
以上の結果から,CDAは関心のシグナルをよりよく捉えた合理性を生み出すことが示唆された。
論文 参考訳(メタデータ) (2022-01-13T19:05:02Z) - Precise Learning of Source Code Contextual Semantics via Hierarchical
Dependence Structure and Graph Attention Networks [28.212889828892664]
階層的な依存関係を組み込んだ新しいソースコードモデルを提案する。
本稿では,基本ブロックの構文構造,すなわち対応するASTをソースコードモデルに導入し,十分な情報を提供する。
その結果,本モデルではパラメータのスケールを50%削減し,プログラム分類タスクの精度を4%向上させることができた。
論文 参考訳(メタデータ) (2021-11-20T04:03:42Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
対話型モデルと非対話型モデルの利点を活用する新しいフレームワークを提案する。
非対話型アーキテクチャ上でモデルを構築できる半対話型機構を導入するが、各文書を関連付けられた多言語クエリと共にエンコードする。
本手法は,計算効率を維持しながら検索精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-03T03:03:19Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Clustering-based Unsupervised Generative Relation Extraction [3.342376225738321]
クラスタリングに基づく教師なし生成関係抽出フレームワーク(CURE)を提案する。
我々は「エンコーダ・デコーダ」アーキテクチャを用いて自己教師付き学習を行い、エンコーダが関係情報を抽出できるようにする。
我々のモデルは、ニューヨーク・タイムズ(NYT)と国連並列コーパス(UNPC)の標準データセットにおいて、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2020-09-26T20:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。