論文の概要: Prompt-based vs. Fine-tuned LLMs Toward Causal Graph Verification
- arxiv url: http://arxiv.org/abs/2406.16899v1
- Date: Wed, 29 May 2024 09:06:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:41:31.130617
- Title: Prompt-based vs. Fine-tuned LLMs Toward Causal Graph Verification
- Title(参考訳): 因果グラフ検証に向けたPrompt-based vs. Fine-Tuned LLMs
- Authors: Yuni Susanti, Nina Holsmoelle,
- Abstract要約: 本研究の目的は,テキストソースを用いた因果グラフの自動検証に自然言語処理(NLP)技術を適用することである。
我々は,(1)因果関係分類タスク用に微調整された事前学習言語モデルと(2)プロンプトベースLPMの2種類のNLPモデルの性能を比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work aims toward an application of natural language processing (NLP) technology for automatic verification of causal graphs using text sources. A causal graph is often derived from unsupervised causal discovery methods and requires manual evaluation from human experts. NLP technologies, i.e., Large Language Models (LLMs) such as BERT and ChatGPT, can potentially be used to verify the resulted causal graph by predicting if causal relation can be observed between node pairs based on the textual context. In this work, we compare the performance of two types of NLP models: (1) Pre-trained language models fine-tuned for causal relation classification task and, (2) prompt-based LLMs. Contrasted to previous studies where prompt-based LLMs work relatively well over a set of diverse tasks, preliminary experiments on biomedical and open-domain datasets suggest that the fine-tuned models far outperform the prompt-based LLMs, up to 20.5 points improvement of F1 score. We shared the code and the pre-processed datasets in our repository.
- Abstract(参考訳): 本研究の目的は,テキストソースを用いた因果グラフの自動検証に自然言語処理(NLP)技術を適用することである。
因果グラフは、しばしば教師なし因果発見法から派生し、人間の専門家による手作業による評価を必要とする。
NLP技術、すなわちBERTやChatGPTのような大規模言語モデル(LLM)は、テキストコンテキストに基づいてノードペア間の因果関係を観測できるかどうかを予測することによって、結果の因果グラフを検証できる可能性がある。
本研究では,(1)因果関係分類タスクに微調整された事前学習言語モデル,(2)プロンプトベースLPMの2種類のNLPモデルの性能を比較した。
プロンプトベースのLLMが様々なタスクに対して比較的うまく機能する以前の研究とは対照的に、バイオメディカルおよびオープンドメインのデータセットに関する予備実験では、微調整されたモデルはプロンプトベースのLLMよりも優れており、F1スコアは最大20.5ポイント向上している。
コードと事前処理されたデータセットをリポジトリで共有しました。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) taskは、自然言語記述を接地テーブルの視覚表現に変換することを目的としている。
多くのディープラーニングベースのアプローチがNL2Vis向けに開発されているが、目に見えないデータベースや複数のテーブルにまたがるデータの視覚化には課題が続いている。
本稿では,Large Language Models (LLMs) の顕著な生成能力からインスピレーションを得て,その可能性を評価するための実証的研究を行う。
論文 参考訳(メタデータ) (2024-04-26T03:25:35Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
オープンドメイン質問応答のための最小限のデータ拡張フレームワークMinPromptを提案する。
我々は、生テキストをグラフ構造に変換し、異なる事実文間の接続を構築する。
次に、グラフアルゴリズムを適用して、原文のほとんどの情報をカバーするのに必要な最小限の文の集合を識別する。
同定された文サブセットに基づいてQAペアを生成し、選択した文に基づいてモデルをトレーニングし、最終モデルを得る。
論文 参考訳(メタデータ) (2023-10-08T04:44:36Z) - Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation
from Text [2.396908230113859]
大規模言語モデル (LLM) と創発的機能を持つ基礎モデルは、多くのNLPタスクの性能を向上させることが示されている。
オントロジーでガイドされた自然言語テキストから知識グラフ(KG)を生成する言語モデルの能力を評価するベンチマークであるText2KGBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T14:47:15Z) - Stretching Sentence-pair NLI Models to Reason over Long Documents and
Clusters [35.103851212995046]
自然言語推論(NLI)は,文ペア間の意味的関係を推定するフレームワークとして,NLPコミュニティによって広く研究されている。
我々は、NLIモデルの実アプリケーションへの直接ゼロショット適用性について、訓練された文ペア設定を超えて検討する。
本研究では,ContractNLIデータセット上で,フルドキュメント上で動作し,最先端のパフォーマンスを実現するための新たなアグリゲーション手法を開発した。
論文 参考訳(メタデータ) (2022-04-15T12:56:39Z) - Coreferential Reasoning Learning for Language Representation [88.14248323659267]
本稿では,コンテキスト内でコアファーデンシャル関係をキャプチャ可能な新しい言語表現モデルCorefBERTを提案する。
実験の結果,既存のベースラインモデルと比較して,CorefBERTは下流のNLPタスクにおいて一貫した大幅な改善を達成できることがわかった。
論文 参考訳(メタデータ) (2020-04-15T03:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。