Beyond Entity Alignment: Towards Complete Knowledge Graph Alignment via Entity-Relation Synergy
- URL: http://arxiv.org/abs/2407.17745v1
- Date: Thu, 25 Jul 2024 03:40:09 GMT
- Title: Beyond Entity Alignment: Towards Complete Knowledge Graph Alignment via Entity-Relation Synergy
- Authors: Xiaohan Fang, Chaozhuo Li, Yi Zhao, Qian Zang, Litian Zhang, Jiquan Peng, Xi Zhang, Jibing Gong,
- Abstract summary: Knowledge Graph alignment aims to integrate knowledge from multiple sources to address the limitations of individual Knowledge Graphs.
Existing models primarily emphasize the linkage of cross-graph entities but overlook aligning relations across KGs.
We propose a novel Expectation-Maximization-based model, EREM, which iteratively optimize both sub-tasks.
- Score: 14.459419325027612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Graph Alignment (KGA) aims to integrate knowledge from multiple sources to address the limitations of individual Knowledge Graphs (KGs) in terms of coverage and depth. However, current KGA models fall short in achieving a ``complete'' knowledge graph alignment. Existing models primarily emphasize the linkage of cross-graph entities but overlook aligning relations across KGs, thereby providing only a partial solution to KGA. The semantic correlations embedded in relations are largely overlooked, potentially restricting a comprehensive understanding of cross-KG signals. In this paper, we propose to conceptualize relation alignment as an independent task and conduct KGA by decomposing it into two distinct but highly correlated sub-tasks: entity alignment and relation alignment. To capture the mutually reinforcing correlations between these objectives, we propose a novel Expectation-Maximization-based model, EREM, which iteratively optimizes both sub-tasks. Experimental results on real-world datasets demonstrate that EREM consistently outperforms state-of-the-art models in both entity alignment and relation alignment tasks.
Related papers
- A Relation-Interactive Approach for Message Passing in Hyper-relational
Knowledge Graphs [0.0]
We propose a message-passing-based graph encoder with global relation structure awareness ability, which we call ReSaE.
Our experiments demonstrate that ReSaE achieves state-of-the-art performance on multiple link prediction benchmarks.
arXiv Detail & Related papers (2024-02-23T06:55:04Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
We show that semantic correlations between relations are inherently edge-level and entity-independent.
We propose a novel subgraph-based method, namely TACO, to model Topology-Aware COrrelations between relations.
To further exploit the potential of RCN, we propose Complete Common Neighbor induced subgraph.
arXiv Detail & Related papers (2023-09-20T08:11:58Z) - Knowledge Graph Completion with Counterfactual Augmentation [23.20561746976504]
We introduce a counterfactual question: "would the relation still exist if the neighborhood of entities became different from observation?"
With a carefully designed instantiation of a causal model on the knowledge graph, we generate the counterfactual relations to answer the question.
We incorporate the created counterfactual relations with the GNN-based framework on KGs to augment their learning of entity pair representations.
arXiv Detail & Related papers (2023-02-25T14:08:15Z) - ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion [78.8942067357231]
ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space.
We show that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on W18RR.
arXiv Detail & Related papers (2022-06-08T23:34:39Z) - Tackling the Challenges in Scene Graph Generation with Local-to-Global
Interactions [4.726777092009554]
We seek new insights into the underlying challenges of the Scene Graph Generation (SGG) task.
Motivated by the analysis, we design a novel SGG framework, Local-to-Global Interaction Networks (LOGIN)
Our framework enables predicting the scene graph in a local-to-global manner by design, leveraging the possible complementariness.
arXiv Detail & Related papers (2021-06-16T03:58:21Z) - Link Prediction on N-ary Relational Facts: A Graph-based Approach [18.01071110085996]
Link prediction on knowledge graphs (KGs) is a key research topic.
This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task.
arXiv Detail & Related papers (2021-05-18T12:40:35Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.