HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging
- URL: http://arxiv.org/abs/2407.17780v1
- Date: Thu, 25 Jul 2024 05:21:48 GMT
- Title: HF-Fed: Hierarchical based customized Federated Learning Framework for X-Ray Imaging
- Authors: Tajamul Ashraf, Tisha Madame,
- Abstract summary: In clinical applications, X-ray technology is vital for noninvasive examinations like mammography, providing essential anatomical information.
X-ray reconstruction is crucial in medical imaging for detailed visual representations of internal structures, aiding diagnosis and treatment without invasive procedures.
Recent advancements in deep learning have shown promise in X-ray reconstruction, but conventional DL methods often require centralized aggregation of large datasets.
We introduce the Hierarchical Framework-based Federated Learning method (HF-Fed) for customized X-ray imaging.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In clinical applications, X-ray technology is vital for noninvasive examinations like mammography, providing essential anatomical information. However, the radiation risk associated with X-ray procedures raises concerns. X-ray reconstruction is crucial in medical imaging for detailed visual representations of internal structures, aiding diagnosis and treatment without invasive procedures. Recent advancements in deep learning (DL) have shown promise in X-ray reconstruction, but conventional DL methods often require centralized aggregation of large datasets, leading to domain shifts and privacy issues. To address these challenges, we introduce the Hierarchical Framework-based Federated Learning method (HF-Fed) for customized X-ray imaging. HF-Fed tackles X-ray imaging optimization by decomposing the problem into local data adaptation and holistic X-ray imaging. It employs a hospital-specific hierarchical framework and a shared common imaging network called Network of Networks (NoN) to acquire stable features from diverse data distributions. The hierarchical hypernetwork extracts domain-specific hyperparameters, conditioning the NoN for customized X-ray reconstruction. Experimental results demonstrate HF-Fed's competitive performance, offering a promising solution for enhancing X-ray imaging without data sharing. This study significantly contributes to the literature on federated learning in healthcare, providing valuable insights for policymakers and healthcare providers. The source code and pre-trained HF-Fed model are available at \url{https://tisharepo.github.io/Webpage/}.
Related papers
- UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
We propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields.
We show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.
arXiv Detail & Related papers (2023-11-10T02:47:15Z) - Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images [1.521162809610347]
We propose a novel and robust approach to improve the quality of X-ray images by iteratively training a deep neural network.
Our framework includes an embedded internal guidance layer that enhances the fine structures of spinal vertebrae in chest X-ray images.
Experimental results demonstrate that our proposed method surpasses existing detail enhancement methods in terms of BRISQUE scores.
arXiv Detail & Related papers (2023-06-06T19:36:11Z) - MDF-Net for abnormality detection by fusing X-rays with clinical data [14.347359031598813]
This study investigates the effects of including patients' clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-rays.
We propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients' clinical data and chest X-rays.
Results show that incorporating patients' clinical data in a DL model together with the proposed fusion methods improves the disease localization in chest X-rays by 12% in terms of Average Precision.
arXiv Detail & Related papers (2023-02-26T19:16:57Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT) fuses textitglobal image information with textitlocal knowledge-guided radiomics information.
RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomic information.
arXiv Detail & Related papers (2022-07-10T06:32:56Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.