Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images
- URL: http://arxiv.org/abs/2306.03983v1
- Date: Tue, 6 Jun 2023 19:36:11 GMT
- Title: Unsupervised Iterative U-Net with an Internal Guidance Layer for
Vertebrae Contrast Enhancement in Chest X-Ray Images
- Authors: Ella Eidlin, Assaf Hoogi, Nathan S. Netanyahu
- Abstract summary: We propose a novel and robust approach to improve the quality of X-ray images by iteratively training a deep neural network.
Our framework includes an embedded internal guidance layer that enhances the fine structures of spinal vertebrae in chest X-ray images.
Experimental results demonstrate that our proposed method surpasses existing detail enhancement methods in terms of BRISQUE scores.
- Score: 1.521162809610347
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: X-ray imaging is a fundamental clinical tool for screening and diagnosing
various diseases. However, the spatial resolution of radiographs is often
limited, making it challenging to diagnose small image details and leading to
difficulties in identifying vertebrae anomalies at an early stage in chest
radiographs. To address this limitation, we propose a novel and robust approach
to significantly improve the quality of X-ray images by iteratively training a
deep neural network. Our framework includes an embedded internal guidance layer
that enhances the fine structures of spinal vertebrae in chest X-ray images
through fully unsupervised training, utilizing an iterative procedure that
employs the same network architecture in each enhancement phase. Additionally,
we have designed an optimized loss function that accurately identifies object
boundaries and enhances spinal features, thereby further enhancing the quality
of the images. Experimental results demonstrate that our proposed method
surpasses existing detail enhancement methods in terms of BRISQUE scores, and
is comparable in terms of LPC-SI. Furthermore, our approach exhibits superior
performance in restoring hidden fine structures, as evidenced by our
qualitative results. This innovative approach has the potential to
significantly enhance the diagnostic accuracy and early detection of diseases,
making it a promising advancement in X-ray imaging technology.
Related papers
- AttCDCNet: Attention-enhanced Chest Disease Classification using X-Ray Images [0.0]
We propose a novel detection model named textbfAttCDCNet for the task of X-ray image diagnosis.
The proposed model achieved an accuracy, precision and recall of 94.94%, 95.14% and 94.53%, respectively, on the COVID-19 Radiography dataset.
arXiv Detail & Related papers (2024-10-20T16:08:20Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
This work presents rapid detection of diseases in the lung using the efficient Deep learning pre-trained RepVGG algorithm.
We are applying Artificial Intelligence technology for automatic highlighted detection of affected areas of people's lungs.
arXiv Detail & Related papers (2022-11-14T03:51:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
Locating lesions is important in the computer-aided diagnosis of X-ray images.
General weakly-supervised methods have failed to consider the characteristics of X-ray images.
We propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection.
arXiv Detail & Related papers (2021-01-22T08:24:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.