EEG-SSM: Leveraging State-Space Model for Dementia Detection
- URL: http://arxiv.org/abs/2407.17801v1
- Date: Thu, 25 Jul 2024 06:20:03 GMT
- Title: EEG-SSM: Leveraging State-Space Model for Dementia Detection
- Authors: Xuan-The Tran, Linh Le, Quoc Toan Nguyen, Thomas Do, Chin-Teng Lin,
- Abstract summary: State-space models (SSMs) have garnered attention for effectively processing long data sequences.
This study introduces EEG-SSM, a novel state-space model-based approach for dementia classification using EEG data.
- Score: 21.67998806043568
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: State-space models (SSMs) have garnered attention for effectively processing long data sequences, reducing the need to segment time series into shorter intervals for model training and inference. Traditionally, SSMs capture only the temporal dynamics of time series data, omitting the equally critical spectral features. This study introduces EEG-SSM, a novel state-space model-based approach for dementia classification using EEG data. Our model features two primary innovations: EEG-SSM temporal and EEG-SSM spectral components. The temporal component is designed to efficiently process EEG sequences of varying lengths, while the spectral component enhances the model by integrating frequency-domain information from EEG signals. The synergy of these components allows EEG-SSM to adeptly manage the complexities of multivariate EEG data, significantly improving accuracy and stability across different temporal resolutions. Demonstrating a remarkable 91.0 percent accuracy in classifying Healthy Control (HC), Frontotemporal Dementia (FTD), and Alzheimer's Disease (AD) groups, EEG-SSM outperforms existing models on the same dataset. The development of EEG-SSM represents an improvement in the use of state-space models for screening dementia, offering more precise and cost-effective tools for clinical neuroscience.
Related papers
- FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) is a novel approach using adaptive temporal-lateral attention scaling.
FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps.
arXiv Detail & Related papers (2024-09-19T04:22:40Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records [11.130065253661147]
We propose a Missingness-aware mUlti-branching Self-attention (MUSE-Net) to cope with the challenges in modeling longitudinal EHRs for data-driven disease prediction.
We evaluate the proposed MUSE-Net using both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-06-30T21:54:41Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - ESTformer: Transformer Utilizing Spatiotemporal Dependencies for EEG
Super-resolution [14.2426667945505]
ESTformer is an EEG framework utilizingtemporal dependencies based on the Transformer.
The ESTformer applies positional encoding methods and the Multi-head Self-attention mechanism to the space and time dimensions.
arXiv Detail & Related papers (2023-12-03T12:26:32Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
Non-intrusive Load Monitoring (NILM) is an established technique for effective and cost-efficient electricity consumption management.
This paper presents a hybrid learning approach, consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory (BILSTM)
CNN-BILSTM model is adept at extracting both temporal (time-related) and spatial (location-related) features, allowing it to precisely identify energy consumption patterns at the appliance level.
arXiv Detail & Related papers (2023-11-14T21:02:27Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.