Geodesic Optimization for Predictive Shift Adaptation on EEG data
- URL: http://arxiv.org/abs/2407.03878v2
- Date: Mon, 07 Oct 2024 14:14:54 GMT
- Title: Geodesic Optimization for Predictive Shift Adaptation on EEG data
- Authors: Apolline Mellot, Antoine Collas, Sylvain Chevallier, Alexandre Gramfort, Denis A. Engemann,
- Abstract summary: Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
- Score: 53.58711912565724
- License:
- Abstract: Electroencephalography (EEG) data is often collected from diverse contexts involving different populations and EEG devices. This variability can induce distribution shifts in the data $X$ and in the biomedical variables of interest $y$, thus limiting the application of supervised machine learning (ML) algorithms. While domain adaptation (DA) methods have been developed to mitigate the impact of these shifts, such methods struggle when distribution shifts occur simultaneously in $X$ and $y$. As state-of-the-art ML models for EEG represent the data by spatial covariance matrices, which lie on the Riemannian manifold of Symmetric Positive Definite (SPD) matrices, it is appealing to study DA techniques operating on the SPD manifold. This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA for situations in which source domains have distinct $y$ distributions. GOPSA exploits the geodesic structure of the Riemannian manifold to jointly learn a domain-specific re-centering operator representing site-specific intercepts and the regression model. We performed empirical benchmarks on the cross-site generalization of age-prediction models with resting-state EEG data from a large multi-national dataset (HarMNqEEG), which included $14$ recording sites and more than $1500$ human participants. Compared to state-of-the-art methods, our results showed that GOPSA achieved significantly higher performance on three regression metrics ($R^2$, MAE, and Spearman's $\rho$) for several source-target site combinations, highlighting its effectiveness in tackling multi-source DA with predictive shifts in EEG data analysis. Our method has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG, such as multicenter clinical trials.
Related papers
- SPDIM: Source-Free Unsupervised Conditional and Label Shift Adaptation in EEG [6.002670452103349]
Non-stationary electroencephalography (EEG) introduces distribution shifts across domains (e.g., days and subjects)
Without labeled calibration data for target domains, the problem is a source-free unsupervised domain adaptation (SFUDA) problem.
We propose a geometric deep learning framework for SFUDA problems under specific distribution shifts, including label shifts.
arXiv Detail & Related papers (2024-10-26T21:27:53Z) - Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks [6.404789669795639]
In sleep medicine, assessing the evolution of a subject's sleep often involves the costly manual scoring of electroencephalographic (EEG) signals.
We present a novel way of integrating learned signal-wise features into said matrices without sacrificing their Symmetric Definite Positive (SPD) nature.
arXiv Detail & Related papers (2024-10-18T06:49:52Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - On The Effects Of Data Normalisation For Domain Adaptation On EEG Data [0.0]
This paper focuses on the impact of data normalisation, or standardisation strategies applied together with Domain Adaption (DA) methods.
We experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods.
It results that the choice of the normalisation strategy plays a key role on the performances in DA scenarios.
arXiv Detail & Related papers (2022-10-03T16:51:12Z) - Deep Optimal Transport for Domain Adaptation on SPD Manifolds [9.552869120136005]
neuroimaging data possess the mathematical properties of symmetry and positive definiteness.
Applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted.
We introduce a novel geometric deep learning-based approach to manage discrepancies in both marginal and conditional distributions.
arXiv Detail & Related papers (2022-01-15T03:13:02Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.