論文の概要: Scalable circuit depth reduction in feedback-based quantum optimization with a quadratic approximation
- arxiv url: http://arxiv.org/abs/2407.17810v1
- Date: Thu, 25 Jul 2024 06:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:57:54.025887
- Title: Scalable circuit depth reduction in feedback-based quantum optimization with a quadratic approximation
- Title(参考訳): 二次近似を用いたフィードバックに基づく量子最適化におけるスケーラブル回路深さの低減
- Authors: Don Arai, Ken N. Okada, Yuichiro Nakano, Kosuke Mitarai, Keisuke Fujii,
- Abstract要約: 本稿では,時間間隔に関する2次近似を導入し,パラメータ決定のための新しいフィードバック法を提案する。
提案手法は回路の深さを大幅に減少させ,その線形スケーリングを1桁以上小さくすることを示した。
- 参考スコア(独自算出の注目度): 0.6834295298053009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization problems are one of the areas where near-term noisy quantum computers may have practical advantage against classical computers. Recently a novel feedback-based quantum optimization algorithm has been proposed by Magann \textit{et al}. The method explicitly determines quantum circuit parameters by feeding back measurement results thus avoids classical parameter optimization that is known to cause significant trouble in quantum approximate optimization algorithm, the well-studied near-term algorithm. Meanwhile, a significant drawback of the feedback-based quantum optimization is that it requires deep circuits, rendering the method unsuitable to noisy quantum devices. In this study we propose a new feedback law for parameter determination by introducing the second-order approximation with respect to time interval, a hyperparameter in the feedback-based quantum optimization. This allows one to take larger time interval, leading to acceleration of convergence to solutions. In numerical simulations on the maximum cut problem we demonstrate that our proposal significantly reduces circuit depth, with its linear scaling with the problem size smaller by more than an order of magnitude. We expect that the new feedback law proposed in this work may pave the way for feedback-based quantum optimization with near-term noisy quantum computers.
- Abstract(参考訳): 組合せ最適化問題は、短期的なノイズの多い量子コンピュータが古典的コンピュータに対して実用的な優位性を持つ分野の1つである。
最近、Magann \textit{et al} により、フィードバックに基づく新しい量子最適化アルゴリズムが提案されている。
提案手法は, 量子近似最適化アルゴリズムにおいて問題となる古典的パラメータ最適化を回避するために, 測定結果をフィードバックすることで, 量子回路パラメータを明示的に決定する。
一方、フィードバックベースの量子最適化の重大な欠点は、深い回路を必要とすることであり、ノイズの多い量子デバイスには適さない。
本研究では,フィードバックに基づく量子最適化におけるハイパーパラメータである時間間隔に関する2次近似を導入することで,パラメータ決定のための新たなフィードバック法則を提案する。
これにより、より大きな時間間隔を取ることができ、解への収束の加速につながる。
最大カット問題に関する数値シミュレーションにおいて,提案手法は回路の深さを大幅に減少させ,その線形スケーリングを1桁以上小さくすることを示した。
この研究で提案された新たなフィードバック法則は、短期雑音量子コンピュータによるフィードバックに基づく量子最適化の道を開くことを期待する。
関連論文リスト
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
ハイブリッド量子-古典的変分アルゴリズムは、ノイズの多い量子コンピュータに最適であると考えられている。
コスト関数に直接対称性の保存を符号化し、ハードウェア効率の良いAns"atzeをより効率的に利用できるようにする。
論文 参考訳(メタデータ) (2024-11-25T20:33:47Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Bayesian Optimization for QAOA [0.0]
量子回路を最適化するためのベイズ最適化手法を提案する。
提案手法により,量子回路の呼び出し回数を大幅に削減できることを示す。
提案手法は,ノイズの多い中間規模量子デバイス上でのQAOAのハイブリッド特性を活用するための,有望なフレームワークであることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T13:59:47Z) - Bayesian Learning of Parameterised Quantum Circuits [0.0]
我々はベイズ後部の近似として古典的最適化の確率論的視点を取り、再定式化する。
ラプラスを用いた最大後点推定に基づく次元縮小戦略について述べる。
量子H1-2コンピュータの実験では、結果として得られる回路は勾配なしで訓練された回路よりも高速でノイズが少ないことが示されている。
論文 参考訳(メタデータ) (2022-06-15T14:20:14Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Avoiding local minima in Variational Quantum Algorithms with Neural
Networks [0.0]
変分量子アルゴリズムは、短期計算の先導パラダイムとして登場してきた。
本稿では,勾配景観問題の事例をベンチマークする2つのアルゴリズムを提案する。
提案手法は,コストランドスケープが短期量子コンピューティングアルゴリズムを改善するための実りある道であることを示唆している。
論文 参考訳(メタデータ) (2021-04-07T07:07:28Z) - Feedback-based quantum optimization [0.0]
本稿では,量子回路パラメータに対して,量子ビット計測の結果を構成的に割り当てる,量子最適化のためのフィードバックベースの戦略を提案する。
この手法により,量子回路の深さを単調に改善する最適化問題の解が推定されることを示す。
論文 参考訳(メタデータ) (2021-03-15T18:01:03Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。