Long-term Fairness in Ride-Hailing Platform
- URL: http://arxiv.org/abs/2407.17839v1
- Date: Thu, 25 Jul 2024 07:54:07 GMT
- Title: Long-term Fairness in Ride-Hailing Platform
- Authors: Yufan Kang, Jeffrey Chan, Wei Shao, Flora D. Salim, Christopher Leckie,
- Abstract summary: We propose a dynamic Markov Decision Process model to alleviate fairness issues faced by ride-hailing.
Our proposed method outperforms existing state-of-the-art methods.
- Score: 20.276533196467092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matching in two-sided markets such as ride-hailing has recently received significant attention. However, existing studies on ride-hailing mainly focus on optimising efficiency, and fairness issues in ride-hailing have been neglected. Fairness issues in ride-hailing, including significant earning differences between drivers and variance of passenger waiting times among different locations, have potential impacts on economic and ethical aspects. The recent studies that focus on fairness in ride-hailing exploit traditional optimisation methods and the Markov Decision Process to balance efficiency and fairness. However, there are several issues in these existing studies, such as myopic short-term decision-making from traditional optimisation and instability of fairness in a comparably longer horizon from both traditional optimisation and Markov Decision Process-based methods. To address these issues, we propose a dynamic Markov Decision Process model to alleviate fairness issues currently faced by ride-hailing, and seek a balance between efficiency and fairness, with two distinct characteristics: (i) a prediction module to predict the number of requests that will be raised in the future from different locations to allow the proposed method to consider long-term fairness based on the whole timeline instead of consider fairness only based on historical and current data patterns; (ii) a customised scalarisation function for multi-objective multi-agent Q Learning that aims to balance efficiency and fairness. Extensive experiments on a publicly available real-world dataset demonstrate that our proposed method outperforms existing state-of-the-art methods.
Related papers
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
This paper addresses the challenge of integrating a debiasing phase into predictive business process analytics.
Our framework leverages on adversial debiasing is evaluated on four case studies, showing a significant reduction in the contribution of biased variables to the predicted value.
arXiv Detail & Related papers (2024-10-03T15:56:03Z) - Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System [7.531863938542706]
The rapid growth of the ride-hailing industry has revolutionized urban transportation worldwide.
Despite its benefits, equity concerns arise as underserved communities face limited accessibility to affordable ride-hailing services.
This paper focuses on enhancing both algorithmic and rider fairness through a novel vehicle rebalancing method.
arXiv Detail & Related papers (2023-12-29T23:02:34Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
arXiv Detail & Related papers (2023-10-17T12:40:53Z) - Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies towards Equal Long-term Benefit Rate [41.51680686036846]
We introduce a long-term fairness concept named Equal Long-term Benefit Rate (ELBERT) to address biases in sequential decision-making.
ELBERT effectively addresses the temporal discrimination issues found in previous long-term fairness notions.
We show that ELBERT-PO significantly diminishes bias while maintaining high utility.
arXiv Detail & Related papers (2023-09-07T01:10:01Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
Modern NLP systems exhibit a range of biases, which a growing literature on model debiasing attempts to correct.
This paper seeks to clarify the current situation and plot a course for meaningful progress in fair learning.
arXiv Detail & Related papers (2023-02-11T14:54:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Fairness and Explainability: Bridging the Gap Towards Fair Model
Explanations [12.248793742165278]
We bridge the gap between fairness and explainability by presenting a novel perspective of procedure-oriented fairness based on explanations.
We propose a Comprehensive Fairness Algorithm (CFA), which simultaneously fulfills multiple objectives - improving traditional fairness, satisfying explanation fairness, and maintaining the utility performance.
arXiv Detail & Related papers (2022-12-07T18:35:54Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
We present the ApeRI-miodic (ARISE) process for investigating efficient markets.
The ARISE process is formulated as an infinite-sum of some known processes and employs the aperiodic spectrum estimation.
In practice, we apply the ARISE function to identify the efficiency of real-world markets.
arXiv Detail & Related papers (2021-11-08T03:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.