Remember, but also, Forget: Bridging Myopic and Perfect Recall Fairness with Past-Discounting
- URL: http://arxiv.org/abs/2504.01154v1
- Date: Tue, 01 Apr 2025 19:42:17 GMT
- Title: Remember, but also, Forget: Bridging Myopic and Perfect Recall Fairness with Past-Discounting
- Authors: Ashwin Kumar, William Yeoh,
- Abstract summary: Dynamic resource allocation in multi-agent settings often requires balancing efficiency with fairness over time.<n>Motivated by behavioral insights that human judgments of fairness evolve with temporal distance, we introduce a novel framework for temporal fairness that incorporates past-discounting mechanisms.<n>We detail the formulation of discounted-recall fairness in both additive and averaged utility contexts, illustrate its benefits through practical examples, and discuss its implications for designing balanced, scalable resource allocation strategies.
- Score: 4.788163807490197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic resource allocation in multi-agent settings often requires balancing efficiency with fairness over time--a challenge inadequately addressed by conventional, myopic fairness measures. Motivated by behavioral insights that human judgments of fairness evolve with temporal distance, we introduce a novel framework for temporal fairness that incorporates past-discounting mechanisms. By applying a tunable discount factor to historical utilities, our approach interpolates between instantaneous and perfect-recall fairness, thereby capturing both immediate outcomes and long-term equity considerations. Beyond aligning more closely with human perceptions of fairness, this past-discounting method ensures that the augmented state space remains bounded, significantly improving computational tractability in sequential decision-making settings. We detail the formulation of discounted-recall fairness in both additive and averaged utility contexts, illustrate its benefits through practical examples, and discuss its implications for designing balanced, scalable resource allocation strategies.
Related papers
- Long-term Fairness in Ride-Hailing Platform [20.276533196467092]
We propose a dynamic Markov Decision Process model to alleviate fairness issues faced by ride-hailing.
Our proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-07-25T07:54:07Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.<n>We show that enforcing a causal constraint often reduces the disparity between demographic groups.<n>We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Understanding Fairness Surrogate Functions in Algorithmic Fairness [21.555040357521907]
We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
arXiv Detail & Related papers (2023-10-17T12:40:53Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Conformalized Fairness via Quantile Regression [8.180169144038345]
We propose a novel framework to learn a real-valued quantile function under the fairness requirement of Demographic Parity.
We establish theoretical guarantees of distribution-free coverage and exact fairness for the induced prediction interval constructed by fair quantiles.
Our results show the model's ability to uncover the mechanism underlying the fairness-accuracy trade-off in a wide range of societal and medical applications.
arXiv Detail & Related papers (2022-10-05T04:04:15Z) - Fairness and robustness in anti-causal prediction [73.693135253335]
Robustness to distribution shift and fairness have independently emerged as two important desiderata required of machine learning models.
While these two desiderata seem related, the connection between them is often unclear in practice.
By taking this perspective, we draw explicit connections between a common fairness criterion - separation - and a common notion of robustness.
arXiv Detail & Related papers (2022-09-20T02:41:17Z) - Fusion and Orthogonal Projection for Improved Face-Voice Association [15.938463726577128]
We study the problem of learning association between face and voice.
We propose a light-weight, plug-and-play mechanism that exploits the complementary cues in both modalities to form enriched fused embeddings.
arXiv Detail & Related papers (2021-12-20T12:33:33Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
In the application of machine learning to real-life decision-making systems, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness.
The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss.
In this paper, we introduce a new approach to handle fairness by formulating a multi-objective optimization problem.
arXiv Detail & Related papers (2020-08-03T18:51:24Z) - Learning Expectation of Label Distribution for Facial Age and
Attractiveness Estimation [65.5880700862751]
We analyze the essential relationship between two state-of-the-art methods (Ranking-CNN and DLDL) and show that the Ranking method is in fact learning label distribution implicitly.
We propose a lightweight network architecture and propose a unified framework which can jointly learn facial attribute distribution and regress attribute value.
Our method achieves new state-of-the-art results using the single model with 36$times$ fewer parameters and 3$times$ faster inference speed on facial age/attractiveness estimation.
arXiv Detail & Related papers (2020-07-03T15:46:53Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.