Understanding Fairness Surrogate Functions in Algorithmic Fairness
- URL: http://arxiv.org/abs/2310.11211v4
- Date: Tue, 9 Apr 2024 02:43:58 GMT
- Title: Understanding Fairness Surrogate Functions in Algorithmic Fairness
- Authors: Wei Yao, Zhanke Zhou, Zhicong Li, Bo Han, Yong Liu,
- Abstract summary: We show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function.
We elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness.
- Score: 21.555040357521907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been observed that machine learning algorithms exhibit biased predictions against certain population groups. To mitigate such bias while achieving comparable accuracy, a promising approach is to introduce surrogate functions of the concerned fairness definition and solve a constrained optimization problem. However, it is intriguing in previous work that such fairness surrogate functions may yield unfair results and high instability. In this work, in order to deeply understand them, taking a widely used fairness definition--demographic parity as an example, we show that there is a surrogate-fairness gap between the fairness definition and the fairness surrogate function. Also, the theoretical analysis and experimental results about the gap motivate us that the fairness and stability will be affected by the points far from the decision boundary, which is the large margin points issue investigated in this paper. To address it, we propose the general sigmoid surrogate to simultaneously reduce both the surrogate-fairness gap and the variance, and offer a rigorous fairness and stability upper bound. Interestingly, the theory also provides insights into two important issues that deal with the large margin points as well as obtaining a more balanced dataset are beneficial to fairness and stability. Furthermore, we elaborate a novel and general algorithm called Balanced Surrogate, which iteratively reduces the gap to mitigate unfairness. Finally, we provide empirical evidence showing that our methods consistently improve fairness and stability while maintaining accuracy comparable to the baselines in three real-world datasets.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.
We show that enforcing a causal constraint often reduces the disparity between demographic groups.
We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - RobustFair: Adversarial Evaluation through Fairness Confusion Directed
Gradient Search [8.278129731168127]
Deep neural networks (DNNs) often face challenges due to their vulnerability to various adversarial perturbations.
This paper introduces a novel approach, RobustFair, to evaluate the accurate fairness of DNNs when subjected to false or biased perturbations.
arXiv Detail & Related papers (2023-05-18T12:07:29Z) - Fairness through Aleatoric Uncertainty [18.95295731419523]
We introduce the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off.
Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness.
We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere.
arXiv Detail & Related papers (2023-04-07T13:50:57Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Conformalized Fairness via Quantile Regression [8.180169144038345]
We propose a novel framework to learn a real-valued quantile function under the fairness requirement of Demographic Parity.
We establish theoretical guarantees of distribution-free coverage and exact fairness for the induced prediction interval constructed by fair quantiles.
Our results show the model's ability to uncover the mechanism underlying the fairness-accuracy trade-off in a wide range of societal and medical applications.
arXiv Detail & Related papers (2022-10-05T04:04:15Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - SLIDE: a surrogate fairness constraint to ensure fairness consistency [1.3649494534428745]
We propose a new surrogate fairness constraint called SLIDE, which is feasible and achieves a fast convergence rate.
Numerical experiments confirm that SLIDE works well for various benchmark datasets.
arXiv Detail & Related papers (2022-02-07T13:50:21Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.