論文の概要: Advancing 3D Point Cloud Understanding through Deep Transfer Learning: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2407.17877v1
- Date: Thu, 25 Jul 2024 08:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:38:10.822130
- Title: Advancing 3D Point Cloud Understanding through Deep Transfer Learning: A Comprehensive Survey
- Title(参考訳): ディープラーニングによる3Dポイントクラウド理解の促進: 総合的な調査
- Authors: Shahab Saquib Sohail, Yassine Himeur, Hamza Kheddar, Abbes Amira, Fodil Fadli, Shadi Atalla, Abigail Copiaco, Wathiq Mansoor,
- Abstract要約: 本稿では,ディープラーニング(DTL)とドメイン適応(DA)を用いた最新の3DPC理解手法について概観する。
本稿では,3DPCオブジェクト検出,セマンティックラベリング,セグメンテーション,分類,登録,ダウンサンプリング/アップサンプリング,デノナイズなど,さまざまな応用について述べる。
- 参考スコア(独自算出の注目度): 3.929140365559557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 3D point cloud (3DPC) has significantly evolved and benefited from the advance of deep learning (DL). However, the latter faces various issues, including the lack of data or annotated data, the existence of a significant gap between training data and test data, and the requirement for high computational resources. To that end, deep transfer learning (DTL), which decreases dependency and costs by utilizing knowledge gained from a source data/task in training a target data/task, has been widely investigated. Numerous DTL frameworks have been suggested for aligning point clouds obtained from several scans of the same scene. Additionally, DA, which is a subset of DTL, has been modified to enhance the point cloud data's quality by dealing with noise and missing points. Ultimately, fine-tuning and DA approaches have demonstrated their effectiveness in addressing the distinct difficulties inherent in point cloud data. This paper presents the first review shedding light on this aspect. it provides a comprehensive overview of the latest techniques for understanding 3DPC using DTL and domain adaptation (DA). Accordingly, DTL's background is first presented along with the datasets and evaluation metrics. A well-defined taxonomy is introduced, and detailed comparisons are presented, considering different aspects such as different knowledge transfer strategies, and performance. The paper covers various applications, such as 3DPC object detection, semantic labeling, segmentation, classification, registration, downsampling/upsampling, and denoising. Furthermore, the article discusses the advantages and limitations of the presented frameworks, identifies open challenges, and suggests potential research directions.
- Abstract(参考訳): 3Dポイントクラウド(3DPC)は、ディープラーニング(DL)の進歩によって大きく進化し、恩恵を受けている。
しかし後者は、データや注釈付きデータの欠如、トレーニングデータとテストデータの間に大きなギャップがあること、高い計算リソースの必要性など、さまざまな問題に直面している。
そのために,対象データ/タスクのトレーニングにおいて,ソースデータ/タスクから得られた知識を活用して,依存度とコストを削減するディープ・トランスファー・ラーニング(DTL)が広く研究されている。
多数のDTLフレームワークが、同じシーンの複数のスキャンから得られた点雲を整列するために提案されている。
さらに、DTLのサブセットであるDAは、ノイズや欠落点を扱うことで、ポイントクラウドデータの質を高めるために修正されている。
最終的に、微調整とDAアプローチは、ポイントクラウドデータに固有の難しさに対処する上で、その効果を実証した。
本稿は、この点について初めて光を当てたレビューである。
DTLとドメイン適応(DA)を使用して3DPCを理解するための最新の技術の概要を提供する。
したがって、DTLの背景はまずデータセットと評価指標と共に提示される。
明確に定義された分類法を導入し、異なる知識伝達戦略や性能といった異なる側面を考慮して詳細な比較を行う。
本稿では,3DPCオブジェクト検出,セマンティックラベリング,セグメンテーション,分類,登録,ダウンサンプリング/アップサンプリング,デノナイズなど,さまざまな応用について述べる。
さらに、提示されたフレームワークの利点と限界について論じ、オープンな課題を特定し、潜在的研究の方向性を提案する。
関連論文リスト
- Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
本稿では, DPKE という新しい2次元知識豊か化手法を提案する。
我々のDPKEは、データパースペクティブと機能パースペクティブという2つの観点から、限られたトレーニングデータ、特にラベルなしデータの知識を豊かにしています。
論文 参考訳(メタデータ) (2024-01-10T08:56:07Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Self-Supervised Learning for Point Clouds Data: A Survey [8.858165912687923]
自己監督学習(SSL)は、時間と労働集約的なデータラベリング問題を解決するための重要なソリューションであると考えられている。
本稿では,ポイントクラウドにおけるSSLの最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2023-05-09T08:47:09Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
ディープラーニングの手法は注釈付きデータに大きく依存しており、ドメインの一般化の問題に直面することが多い。
LiDAR-CSデータセットは、リアルタイムトラフィックにおける3Dオブジェクト検出の領域におけるセンサ関連ギャップに対処する最初のデータセットである。
論文 参考訳(メタデータ) (2023-01-29T19:10:35Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey and
Experimental Study [5.6780397318769245]
3Dセマンティックセグメンテーションは、ロボットおよび自律運転アプリケーションの基本課題である。
最近の研究はディープラーニング技術の利用に重点を置いているが、細かな注釈付き3DLiDARデータセットの開発は非常に労働集約的である。
不十分なデータセットによって引き起こされるパフォーマンスの制限は、データ飢餓問題と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T01:20:59Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。