Two-Level System Nanomechanics in the Blue-Detuned Regime
- URL: http://arxiv.org/abs/2407.17916v2
- Date: Wed, 19 Feb 2025 08:22:05 GMT
- Title: Two-Level System Nanomechanics in the Blue-Detuned Regime
- Authors: Guillaume Bertel, Clement Dutreix, Fabio Pistolesi,
- Abstract summary: We study a mechanical oscillator coupled to a two-level system driven by a blue-detuned coherent source in the resolved sideband regime.
For weak mechanical damping, we find dynamical instabilities leading to limit cycles.
The phonon-number fluctuations exhibit a strikingly similar behavior.
- Score: 0.0
- License:
- Abstract: We study a mechanical oscillator coupled to a two-level system driven by a blue-detuned coherent source in the resolved sideband regime. For weak mechanical damping, we find dynamical instabilities leading to limit cycles. They are signaled by strong fluctuations in the number of emitted photons, with a large Fano factor. The phonon-number fluctuations exhibit a strikingly similar behavior. When the coupling strength becomes comparable to the mechanical frequency, non-classical mechanical states appear. We demonstrate that these properties can be detected by measuring the photon-emission spectrum, which enables the reconstruction of the Wigner function. We then discuss the relation with cavity optomechanical systems. Candidates for observing these effects include superconducting qubits, NV centers, and single molecules coupled to oscillators.
Related papers
- Quantum state transfer of superposed multi-photon states via phonon-induced dynamic resonance in an optomechanical system [0.0]
We propose a method to transfer macroscopically superposed states between two optical cavities mediated by a mechanical oscillator.
We show that transfer fidelity of 0.99 can be achieved using the experimental parameters in currently available technology.
arXiv Detail & Related papers (2025-01-03T05:36:11Z) - Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Realizing mechanical dynamical Casimir effect with low-frequency oscillator [0.0]
We realize the mechanical dynamical Casimir effect (DCE) in a hybrid optomechanical system.
The mechanical energy is found to be directly converted into the output photons through a three-wave-mixing mechanism.
It is found that the mechanical frequency can be about two orders of magnitude smaller than the output photons.
arXiv Detail & Related papers (2024-08-05T08:38:44Z) - Single-photon induced instabilities in a cavity electromechanical device [0.0]
nonlinear radiation-pressure interaction in Cavity-electromechanical systems could result in an unstable response of the mechanical resonator.
By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rate.
Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing.
arXiv Detail & Related papers (2023-09-13T07:33:09Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.