論文の概要: GLASS: Guided Latent Slot Diffusion for Object-Centric Learning
- arxiv url: http://arxiv.org/abs/2407.17929v2
- Date: Sat, 07 Jun 2025 03:45:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:46.77646
- Title: GLASS: Guided Latent Slot Diffusion for Object-Centric Learning
- Title(参考訳): GLASS:オブジェクト指向学習のためのガイド付き潜在スロット拡散
- Authors: Krishnakant Singh, Simone Schaub-Meyer, Stefan Roth,
- Abstract要約: 本稿では,生成画像空間で学習するスロットアテンションモデルであるGLASSについて紹介する。
我々の実験は、GLASSが最先端のスロットアテンション手法を、(ゼロショット)オブジェクト発見のようなタスクの幅広いマージンで超越していることを示している。
GLASSは、複雑な現実的なシーンの合成生成にスロットアテンションを初めて適用することを可能にする。
- 参考スコア(独自算出の注目度): 13.721373817758307
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Object-centric learning aims to decompose an input image into a set of meaningful object files (slots). These latent object representations enable a variety of downstream tasks. Yet, object-centric learning struggles on real-world datasets, which contain multiple objects of complex textures and shapes in natural everyday scenes. To address this, we introduce Guided Latent Slot Diffusion (GLASS), a novel slot-attention model that learns in the space of generated images and uses semantic and instance guidance modules to learn better slot embeddings for various downstream tasks. Our experiments show that GLASS surpasses state-of-the-art slot-attention methods by a wide margin on tasks such as (zero-shot) object discovery and conditional image generation for real-world scenes. Moreover, GLASS enables the first application of slot attention to the compositional generation of complex, realistic scenes.
- Abstract(参考訳): オブジェクト中心学習は、入力画像を意味のあるオブジェクトファイル(スロット)の集合に分解することを目的としている。
これらの潜在オブジェクト表現は、様々な下流タスクを可能にします。
しかし、オブジェクト中心の学習は、複雑なテクスチャや形状の複数のオブジェクトを含む現実世界のデータセットに苦しむ。
GLASSは,生成した画像空間で学習し,セマンティックおよびインスタンスガイダンスモジュールを用いて,下流タスクのスロット埋め込みを改善する新しいスロットアテンションモデルである。
実験の結果,GLASSは現実シーンのオブジェクト発見や条件付き画像生成といったタスクにおいて,最先端のスロットアテンション手法をはるかに超えていることがわかった。
さらに、GLASSは、複雑な現実的なシーンの合成生成にスロットアテンションを初めて適用することを可能にする。
関連論文リスト
- A Recipe for Improving Remote Sensing VLM Zero Shot Generalization [0.4427533728730559]
本稿では,リモートセンシング基礎モデルのトレーニングのための2つの新しい画像キャプチャーデータセットを提案する。
最初のデータセットは、Google Mapsから抽出されたランドマークを使用して、Geminiによって生成されたキャプションと航空画像と衛星画像のペアである。
第2のデータセットは、リモートセンシングドメインのためにフィルタリングされたパブリックWebイメージとそれに対応するalt-textを利用する。
論文 参考訳(メタデータ) (2025-03-10T21:09:02Z) - Object-Aware Video Matting with Cross-Frame Guidance [35.785998735049006]
我々は、異なるオブジェクトを知覚し、前景オブジェクトの協調認識とエッジ詳細の洗練を可能にする、トリマップフリーなオブジェクト認識ビデオマッチング(OAVM)フレームワークを提案する。
具体的には,OGCR(Object-Guided Correction and Refinement)モジュールを提案する。
また、逐次シナリオを多様化し、オブジェクト識別のためのネットワークの容量を高めるために、逐次フォアグラウンドマージ拡張戦略を設計する。
論文 参考訳(メタデータ) (2025-03-03T07:40:32Z) - SODAWideNet++: Combining Attention and Convolutions for Salient Object Detection [3.2586315449885106]
本稿では,Salient Object Detectionのために設計されたSODAWideNet++と呼ばれる新しいエンコーダ・デコーダ型ニューラルネットワークを提案する。
視覚変換器が初期からグローバルな受容場を得る能力に触発されて、注意誘導長距離特徴抽出(AGLRFE)モジュールを導入する。
ImageNet事前トレーニングの現在のパラダイムとは対照的に、提案したモデルエンドツーエンドの事前トレーニングのためにアノテーションをバイナライズすることで、COCOセマンティックセグメンテーションデータセットから118Kの注釈付き画像を修正します。
論文 参考訳(メタデータ) (2024-08-29T15:51:06Z) - General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
本稿では,画像やビデオ中の物体の位置と識別のためのオブジェクトレベルの基礎モデルであるGLEEを提案する。
GLEEは、オープンワールドシナリオにおける任意のオブジェクトの検出、セグメンテーション、トラッキング、グラウンド、識別を達成する。
画像エンコーダ,テキストエンコーダ,視覚プロンプトを用いて複数モーダル入力を処理し,様々なオブジェクト中心の下流タスクを同時に解決する。
論文 参考訳(メタデータ) (2023-12-14T17:26:00Z) - Grounding Everything: Emerging Localization Properties in
Vision-Language Transformers [51.260510447308306]
事前学習された視覚言語(VL)モデルでは、微調整なしでゼロショットのオープン語彙オブジェクトローカライゼーションが可能であることを示す。
本稿では,CLIPSurgeryが自己注意経路に導入した価値価値注意の考え方を一般化するグラウンドング・エコノミクス・モジュール(GEM)を提案する。
セマンティックセグメンテーションのための様々なベンチマークタスクとデータセットに基づいて提案したGEMフレームワークを評価する。
論文 参考訳(メタデータ) (2023-12-01T19:06:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - SlotDiffusion: Object-Centric Generative Modeling with Diffusion Models [47.986381326169166]
SlotDiffusion - 画像データとビデオデータの両方に設計されたオブジェクト中心の潜在拡散モデル(LDM)を紹介する。
LDMの強力なモデリング能力のおかげで、SlotDiffusionは教師なしオブジェクトセグメンテーションと視覚生成において、以前のスロットモデルを上回っている。
学習対象の特徴は、既存のオブジェクト中心のダイナミックスモデルによって利用することができ、ビデオ予測品質と下流時間推論タスクを改善することができる。
論文 参考訳(メタデータ) (2023-05-18T19:56:20Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - Guided Slot Attention for Unsupervised Video Object Segmentation [16.69412563413671]
本研究では,空間構造情報を強化し,より優れた前景分離を実現するためのガイド付きスロットアテンションネットワークを提案する。
提案モデルは,2つの一般的なデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-15T02:08:20Z) - OSIC: A New One-Stage Image Captioner Coined [38.46732302316068]
動的多視点学習を用いたワンステージ画像キャプタ(OSIC)を提案する。
リッチな特徴を得るためには、Swin Transformerを使ってマルチレベルの特徴を計算する。
キャプション用エンコーダのグローバルなモデリングを強化するために,新しい2次元精製モジュールを提案する。
論文 参考訳(メタデータ) (2022-11-04T08:50:09Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。