論文の概要: On the Effect of Purely Synthetic Training Data for Different Automatic Speech Recognition Architectures
- arxiv url: http://arxiv.org/abs/2407.17997v2
- Date: Sat, 26 Oct 2024 23:55:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:01:09.588624
- Title: On the Effect of Purely Synthetic Training Data for Different Automatic Speech Recognition Architectures
- Title(参考訳): 異なる音声認識アーキテクチャにおける純合成学習データの効果について
- Authors: Benedikt Hilmes, Nick Rossenbach, and Ralf Schlüter,
- Abstract要約: 音声認識学習における合成データの有用性について検討する。
我々は、元のトレーニングデータを再生し、合成データのみに基づいてASRシステムを訓練する。
トレーニングスコアが過度な適合を示す場合であっても,TTSモデルの一般化は良好であることを示す。
- 参考スコア(独自算出の注目度): 19.823015917720284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we evaluate the utility of synthetic data for training automatic speech recognition (ASR). We use the ASR training data to train a text-to-speech (TTS) system similar to FastSpeech-2. With this TTS we reproduce the original training data, training ASR systems solely on synthetic data. For ASR, we use three different architectures, attention-based encoder-decoder, hybrid deep neural network hidden Markov model and a Gaussian mixture hidden Markov model, showing the different sensitivity of the models to synthetic data generation. In order to extend previous work, we present a number of ablation studies on the effectiveness of synthetic vs. real training data for ASR. In particular we focus on how the gap between training on synthetic and real data changes by varying the speaker embedding or by scaling the model size. For the latter we show that the TTS models generalize well, even when training scores indicate overfitting.
- Abstract(参考訳): 本研究では,自動音声認識(ASR)の学習における合成データの有用性を評価する。
我々は、ASRトレーニングデータを用いて、FastSpeech-2に似たテキスト音声合成システム(TTS)を訓練する。
このTTSにより、我々は元のトレーニングデータを再生し、合成データのみに基づいてASRシステムを訓練する。
ASRでは、アテンションベースのエンコーダデコーダ、ハイブリッドディープニューラルネットワーク隠蔽マルコフモデル、ガウス混合隠蔽マルコフモデルという3つの異なるアーキテクチャを使用し、合成データ生成に対するモデルの異なる感度を示す。
これまでの研究を拡大するために,ASRのための合成と実のトレーニングデータの有効性について,多くのアブレーション研究を行った。
特に、話者埋め込みの変化やモデルサイズの拡大によって、合成データと実データ間のトレーニングのギャップがどのように変化するかに焦点を当てる。
後者については、トレーニングスコアが過度な適合を示す場合であっても、TSモデルがうまく一般化されていることを示す。
関連論文リスト
- On the Problem of Text-To-Speech Model Selection for Synthetic Data Generation in Automatic Speech Recognition [31.58289343561422]
合成データ生成の範囲内で, 5種類のTSデコーダアーキテクチャを比較し, CTCに基づく音声認識学習への影響を示す。
データ生成における自己回帰復号法は,非自己回帰復号法よりも優れており,TTS一般化能力を定量化するためのアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-31T09:37:27Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - On the Relevance of Phoneme Duration Variability of Synthesized Training
Data for Automatic Speech Recognition [0.552480439325792]
合成データの時間構造とASRトレーニングとの関係に着目した。
本研究では, 合成データ品質の劣化が, 非自己回帰性TSの持続時間モデルにどの程度影響されているかを示す。
簡単なアルゴリズムを用いて,TTSシステムの音素持続時間分布を実時間に近づける。
論文 参考訳(メタデータ) (2023-10-12T08:45:21Z) - Towards Selection of Text-to-speech Data to Augment ASR Training [20.115236045164355]
ニューラルネットワークをトレーニングして、合成データの実際の音声との類似性を計測する。
音声認識性能を高めるためには, 実音声とはかなりの相似性を持つ合成サンプルを組み込むことが重要である。
論文 参考訳(メタデータ) (2023-05-30T17:24:28Z) - Text Generation with Speech Synthesis for ASR Data Augmentation [17.348764629839636]
大規模事前学習ニューラルネットワークを用いた音声認識(ASR)のためのテキスト拡張について検討する。
ニューラルモデルはWERの相対的な改善を9%-15%達成し,従来の手法より優れていた。
論文 参考訳(メタデータ) (2023-05-22T18:45:20Z) - Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels [100.43280310123784]
トレーニングセットのサイズを増大させるために,未ラベルデータセットの自動書き起こしの使用について検討した。
近年の文献的傾向であるトレーニングセットのサイズが大きくなると、ノイズのある書き起こしを用いたにもかかわらずWERが減少することが実証された。
提案手法は,RS2 と LRS3 の AV-ASR 上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-25T00:37:34Z) - SOMOS: The Samsung Open MOS Dataset for the Evaluation of Neural
Text-to-Speech Synthesis [50.236929707024245]
SOMOSデータセットは、単にニューラルテキスト音声(TTS)サンプルからなる最初の大規模平均世論スコア(MOS)データセットである。
パブリックドメイン音声データセットであるLJ音声の合成発話20Kから成っている。
論文 参考訳(メタデータ) (2022-04-06T18:45:20Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - SynthASR: Unlocking Synthetic Data for Speech Recognition [15.292920497489925]
そこで本研究では,ASRモデルトレーニングのためのデータが少ない,あるいは取得が困難なアプリケーションにおいて,合成音声をASRトレーニング(SynthASR)に活用することを提案する。
薬物名認識のための新しい応用のための社内データセットを用いて実験を行ったところ、合成音声を用いたASR RNN-Tモデルのトレーニングにより、新しいアプリケーションの認識性能が65%以上向上した。
論文 参考訳(メタデータ) (2021-06-14T23:26:44Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
我々は,高品質な分類器を探索するアルゴリズムとして見ることのできる,新しいトップダウン学習手法を開発した。
本研究では,自動音声認識(ASR)タスクと言語モデリングタスクについて検討した。
提案手法は,Wall Street Journal 上でのリカレントニューラルネットワーク ASR モデル,Switchboard 上での自己注意型 ASR モデル,WikiText-2 上での AWD-LSTM 言語モデルなど,一貫して改善されている。
論文 参考訳(メタデータ) (2021-02-09T08:19:49Z) - You Do Not Need More Data: Improving End-To-End Speech Recognition by
Text-To-Speech Data Augmentation [59.31769998728787]
我々は、ASRトレーニングデータベース上にTSシステムを構築し、合成音声でデータを拡張し、認識モデルを訓練する。
テストクリーンはWER 4.3%,他のテストクリーンは13.5%で、このシステムはLibriSpeechトレインクリーン100で訓練されたエンドツーエンドASRの競争結果を確立している。
論文 参考訳(メタデータ) (2020-05-14T17:24:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。