論文の概要: On the Problem of Text-To-Speech Model Selection for Synthetic Data Generation in Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2407.21476v1
- Date: Wed, 31 Jul 2024 09:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:12:32.122027
- Title: On the Problem of Text-To-Speech Model Selection for Synthetic Data Generation in Automatic Speech Recognition
- Title(参考訳): 音声認識における合成データ生成のためのテキスト音声モデル選択の問題について
- Authors: Nick Rossenbach, Ralf Schlüter, Sakriani Sakti,
- Abstract要約: 合成データ生成の範囲内で, 5種類のTSデコーダアーキテクチャを比較し, CTCに基づく音声認識学習への影響を示す。
データ生成における自己回帰復号法は,非自己回帰復号法よりも優れており,TTS一般化能力を定量化するためのアプローチを提案する。
- 参考スコア(独自算出の注目度): 31.58289343561422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of neural text-to-speech (TTS) systems enabled its usage in other areas of natural language processing such as automatic speech recognition (ASR) or spoken language translation (SLT). Due to the large number of different TTS architectures and their extensions, selecting which TTS systems to use for synthetic data creation is not an easy task. We use the comparison of five different TTS decoder architectures in the scope of synthetic data generation to show the impact on CTC-based speech recognition training. We compare the recognition results to computable metrics like NISQA MOS and intelligibility, finding that there are no clear relations to the ASR performance. We also observe that for data generation auto-regressive decoding performs better than non-autoregressive decoding, and propose an approach to quantify TTS generalization capabilities.
- Abstract(参考訳): 音声認識 (ASR) や音声翻訳 (SLT) といった自然言語処理の分野で, 音声合成システム(TTS) の急速な発展が実現した。
多数の異なるTSアーキテクチャとその拡張のため、合成データ生成に使用するTSシステムを選択するのは容易ではない。
我々は、合成データ生成の範囲内で5種類のTSデコーダアーキテクチャを比較し、CTCに基づく音声認識訓練への影響を示す。
NISQA MOSやインテリジェンスといった計算可能な指標と比較した結果,ASRの性能には明確な相関性がないことがわかった。
また,データ生成の自己回帰復号化は非自己回帰復号化よりも優れており,TTSの一般化能力を定量化する手法を提案する。
関連論文リスト
- Hard-Synth: Synthesizing Diverse Hard Samples for ASR using Zero-Shot TTS and LLM [48.71951982716363]
テキスト音声合成(TTS)モデルは自動音声認識(ASR)システムを強化するために広く採用されている。
我々は,大規模言語モデル(LLM)と高度なゼロショットTSを利用する新しいASRデータ拡張手法であるHard-Synthを提案する。
我々のアプローチでは、追加のテキストデータに頼ることなく、書き直しによる多様なドメイン内テキストを生成するためにLLMを用いる。
論文 参考訳(メタデータ) (2024-11-20T09:49:37Z) - Large Generative Model-assisted Talking-face Semantic Communication System [55.42631520122753]
本研究では,LGM-TSC(Large Generative Model-assisted Talking-face Semantic Communication)システムを提案する。
送信機のジェネレーティブセマンティック・エクストラクタ(GSE)は、意味的にスパースな音声映像を高情報密度のテキストに変換する。
意味的曖昧さと修正のためのLarge Language Model (LLM)に基づくPrivate Knowledge Base (KB)。
BERT-VITS2とSadTalkerモデルを用いた生成意味再構成(GSR)により、テキストを高QoE音声ビデオに変換する。
論文 参考訳(メタデータ) (2024-11-06T12:45:46Z) - SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONARはAI-Audio Detection FrameworkとBenchmarkの合成である。
最先端のAI合成聴覚コンテンツを識別するための総合的な評価を提供することを目的としている。
従来のモデルとファンデーションベースのディープフェイク検出システムの両方で、AIオーディオ検出を均一にベンチマークする最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-06T01:03:42Z) - On the Effect of Purely Synthetic Training Data for Different Automatic Speech Recognition Architectures [19.823015917720284]
音声認識学習における合成データの有用性について検討する。
我々は、元のトレーニングデータを再生し、合成データのみに基づいてASRシステムを訓練する。
トレーニングスコアが過度な適合を示す場合であっても,TTSモデルの一般化は良好であることを示す。
論文 参考訳(メタデータ) (2024-07-25T12:44:45Z) - On the Relevance of Phoneme Duration Variability of Synthesized Training
Data for Automatic Speech Recognition [0.552480439325792]
合成データの時間構造とASRトレーニングとの関係に着目した。
本研究では, 合成データ品質の劣化が, 非自己回帰性TSの持続時間モデルにどの程度影響されているかを示す。
簡単なアルゴリズムを用いて,TTSシステムの音素持続時間分布を実時間に近づける。
論文 参考訳(メタデータ) (2023-10-12T08:45:21Z) - Towards Selection of Text-to-speech Data to Augment ASR Training [20.115236045164355]
ニューラルネットワークをトレーニングして、合成データの実際の音声との類似性を計測する。
音声認識性能を高めるためには, 実音声とはかなりの相似性を持つ合成サンプルを組み込むことが重要である。
論文 参考訳(メタデータ) (2023-05-30T17:24:28Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - GraphSpeech: Syntax-Aware Graph Attention Network For Neural Speech
Synthesis [79.1885389845874]
Transformer-based end-to-end text-to-speech synthesis (TTS)は、このような実装の成功例の一つである。
本稿では,グラフニューラルネットワークフレームワークで定式化された新しいニューラルネットワークモデルであるGraphSpeechを提案する。
実験により、GraphSpeechは、発話のスペクトルと韻律レンダリングの点で、Transformer TTSベースラインを一貫して上回っていることが示された。
論文 参考訳(メタデータ) (2020-10-23T14:14:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。