論文の概要: Learning mental states estimation through self-observation: a developmental synergy between intentions and beliefs representations in a deep-learning model of Theory of Mind
- arxiv url: http://arxiv.org/abs/2407.18022v1
- Date: Thu, 25 Jul 2024 13:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:58:54.114434
- Title: Learning mental states estimation through self-observation: a developmental synergy between intentions and beliefs representations in a deep-learning model of Theory of Mind
- Title(参考訳): 自己観察による精神状態推定の学習--心の理論の深層学習モデルにおける意図と信念表現の発達的相乗効果
- Authors: Francesca Bianco, Silvia Rigato, Maria Laura Filippetti, Dimitri Ognibene,
- Abstract要約: 心の理論(りょうがく、英: Theory of Mind、ToM)とは、信念、意図、精神状態などを他人に関連付ける能力である。
我々は,低レベル精神状態を予測する学習と,高レベル精神状態に寄与する学習との間に発達的な相乗効果を示す。
我々は,人間の社会的認知発達の理解に,我々の計算的アプローチが役立つことを示唆する。
- 参考スコア(独自算出の注目度): 0.35154948148425685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Theory of Mind (ToM), the ability to attribute beliefs, intentions, or mental states to others, is a crucial feature of human social interaction. In complex environments, where the human sensory system reaches its limits, behaviour is strongly driven by our beliefs about the state of the world around us. Accessing others' mental states, e.g., beliefs and intentions, allows for more effective social interactions in natural contexts. Yet, these variables are not directly observable, making understanding ToM a challenging quest of interest for different fields, including psychology, machine learning and robotics. In this paper, we contribute to this topic by showing a developmental synergy between learning to predict low-level mental states (e.g., intentions, goals) and attributing high-level ones (i.e., beliefs). Specifically, we assume that learning beliefs attribution can occur by observing one's own decision processes involving beliefs, e.g., in a partially observable environment. Using a simple feed-forward deep learning model, we show that, when learning to predict others' intentions and actions, more accurate predictions can be acquired earlier if beliefs attribution is learnt simultaneously. Furthermore, we show that the learning performance improves even when observed actors have a different embodiment than the observer and the gain is higher when observing beliefs-driven chunks of behaviour. We propose that our computational approach can inform the understanding of human social cognitive development and be relevant for the design of future adaptive social robots able to autonomously understand, assist, and learn from human interaction partners in novel natural environments and tasks.
- Abstract(参考訳): 心の理論 (Theory of Mind, ToM) は、信念、意図、精神状態を他人に関連付ける能力であり、人間の社会的相互作用の重要な特徴である。
人間の感覚システムが限界に達する複雑な環境では、行動は私たちの周りの世界の状態に対する私たちの信念によって強く推進されます。
他人の精神状態、例えば信念や意図にアクセスすることは、自然の文脈におけるより効果的な社会的相互作用を可能にする。
しかし、これらの変数は直接観察できないため、ToMを理解することは心理学、機械学習、ロボット工学など、さまざまな分野への関心の追求に挑戦する。
本稿では,低レベル精神状態(例えば,意図,目標)を予測する学習と,高レベル精神状態(すなわち信念)に寄与する学習の発達的相乗効果を示すことによって,この話題に寄与する。
具体的には, 学習信念の帰属は, 部分的に観察可能な環境において, 信念を含む自己決定過程を観察することによって生じると仮定する。
簡単なフィードフォワード深層学習モデルを用いて、他人の意図や行動を予測する学習において、信念が同時に学習されると、より正確な予測がより早く得られることを示す。
さらに,観察者が観察者と異なる体格を持つ場合であっても,学習性能が向上し,信念駆動行動の塊を観察する場合の利得が向上することを示した。
我々は,人間の社会認知発達の理解を深め,新しい自然環境やタスクにおいて,人間のインタラクションパートナーから自律的に理解し,支援し,学習できる未来の適応型社会ロボットの設計に関連付けることを提案する。
関連論文リスト
- COKE: A Cognitive Knowledge Graph for Machine Theory of Mind [87.14703659509502]
心の理論(りょうせい、英: Theory of Mind)とは、他者の欲求、信念、意図を理解し、推測する人間の能力のこと。
COKEは、心の機械理論のための最初の認知知識グラフである。
論文 参考訳(メタデータ) (2023-05-09T12:36:58Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
社会的推論は、心の理論(ToM)の能力を必要とする。
ToMに対する最近の機械学習アプローチは、観察者が過去を読み、他のエージェントの振る舞いを提示するように訓練できることを実証している。
我々は,新たなニューラルメモリ機構を組み込んで符号化し,階層的な注意を払って他者に関する情報を選択的に検索することで,課題に対処する。
この結果、ToMMYは心的プロセスについての仮定をほとんど行わずに理性を学ぶマインドモデルである。
論文 参考訳(メタデータ) (2023-01-17T14:48:58Z) - Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs [77.88043871260466]
私たちは、今日の最大の言語モデルのひとつに、このようなソーシャルインテリジェンスを最初から欠いていることを示しています。
我々は、人中心のNLPアプローチは、マインドの神経理論に対してより効果的であるかもしれないと結論づける。
論文 参考訳(メタデータ) (2022-10-24T14:58:58Z) - Robot Learning Theory of Mind through Self-Observation: Exploiting the
Intentions-Beliefs Synergy [0.0]
心の理論(みんがく、英: Theory of Mind、TOM)は、他のエージェントの信念、意図、精神状態に起因する能力である。
我々は,意図や目標などの低レベル精神状態を予測する学習と,信念などの高レベル精神状態に寄与する学習の相乗効果を示す。
我々は,今後の適応型社会ロボットの設計に,我々のアーキテクチャ的アプローチが関係することを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:12:39Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
我々は、社会心理学と社会神経科学の実証結果と力学の枠組みが、よりインテリジェントな人工エージェントの開発にインスピレーションを与えることができると主張している。
論文 参考訳(メタデータ) (2021-12-31T13:41:53Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - Towards hybrid primary intersubjectivity: a neural robotics library for
human science [4.232614032390374]
主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観的主観
本研究では,人-ロボットインタラクション実験のためのオープンソース手法であるテクスチュラルロボティクスライブラリ(NRL)を提案する。
人-ロボット間(ハイブリッド)が人間の科学研究に寄与する方法について論じる。
論文 参考訳(メタデータ) (2020-06-29T11:35:46Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
この研究は、認知科学研究を支援することができる人工知能エージェントに貢献する。
開発された人工知能システム(SensAI+Expanse)には、機械学習アルゴリズム、共感アルゴリズム、メモリが含まれる。
本研究は, 年齢と性別の相違が有意であることを示すものである。
論文 参考訳(メタデータ) (2020-01-03T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。