論文の概要: PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
- arxiv url: http://arxiv.org/abs/2407.18078v1
- Date: Thu, 25 Jul 2024 14:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:49:09.677807
- Title: PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization
- Title(参考訳): PEFT-U:ユーザパーソナライゼーションのためのパラメータ効率の良いファインチューニング
- Authors: Christopher Clarke, Yuzhao Heng, Lingjia Tang, Jason Mars,
- Abstract要約: ユーザパーソナライズのためのNLPモデルの構築と評価のための新しいデータセットであるPEFT-Uベンチマークを紹介する。
多様なユーザ中心タスクのコンテキストにおいて、LLMを効率よくパーソナライズし、ユーザ固有の嗜好に適合させるという課題について検討する。
- 参考スコア(独自算出の注目度): 9.594958534074074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent emergence of Large Language Models (LLMs) has heralded a new era of human-AI interaction. These sophisticated models, exemplified by Chat-GPT and its successors, have exhibited remarkable capabilities in language understanding. However, as these LLMs have undergone exponential growth, a crucial dimension that remains understudied is the personalization of these models. Large foundation models such as GPT-3 etc. focus on creating a universal model that serves a broad range of tasks and users. This approach emphasizes the model's generalization capabilities, treating users as a collective rather than as distinct individuals. While practical for many common applications, this one-size-fits-all approach often fails to address the rich tapestry of human diversity and individual needs. To explore this issue we introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization. \datasetname{} consists of a series of user-centered tasks containing diverse and individualized expressions where the preferences of users can potentially differ for the same input. Using PEFT-U, we explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
- Abstract(参考訳): 近年のLarge Language Models(LLM)の出現は、人間とAIの相互作用の新しい時代を告げている。
Chat-GPTとその後継者によって実証されたこれらの洗練されたモデルは、言語理解において顕著な能力を示した。
しかし、これらのLSMは指数的な成長を遂げているため、これらのモデルのパーソナライズがまだ検討されている重要な次元である。
GPT-3のような大規模な基盤モデルは、幅広いタスクやユーザに役立つ普遍的なモデルを作ることに重点を置いている。
このアプローチはモデルの一般化機能を強調し、ユーザを個別の個人ではなく集合として扱う。
多くの一般的な用途で実用的であるが、このワンサイズのアプローチは、人間の多様性と個人のニーズの豊富なタペストリーに対処できないことが多い。
ユーザパーソナライズのためのNLPモデルの構築と評価のための新しいデータセットであるPEFT-U Benchmarkを紹介した。
\datasetname{} は多様で個別化された表現を含むユーザ中心の一連のタスクで構成され、ユーザの好みは同じ入力に対して潜在的に異なる可能性がある。
PEFT-Uを用いて、多様なユーザ中心タスクのコンテキストにおいて、ユーザ固有の嗜好に対応するために、LLMを効率よくパーソナライズする課題について検討する。
関連論文リスト
- Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
大規模言語モデル(LLM)のパーソナライゼーションはますます重要になっている。
1つのPEFT Per User (OPPU) は、パーソナライズされたパラメータ効率の微調整(PEFT)モジュールを使用して、ユーザ固有の行動パターンと好みを保存する。
OPPUは、LaMPベンチマークの7つのタスクで既存のプロンプトベースのメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-06T21:03:52Z) - Personalized Soups: Personalized Large Language Model Alignment via
Post-hoc Parameter Merging [148.77027765872006]
パーソナライズされたヒューマンフィードバック(RLPHF)問題からの強化学習について検討する。
LLMは、多目的強化学習(MORL)問題としてアライメントをモデル化することで、複数の好みに整列する。
我々は、好みを複数の次元に分解することで、パーソナライズされたアライメントを実現することができることを示す。
論文 参考訳(メタデータ) (2023-10-17T20:22:13Z) - When Large Language Models Meet Personalization: Perspectives of
Challenges and Opportunities [60.5609416496429]
大規模言語モデルの能力は劇的に改善されている。
このような大きな飛躍的なAI能力は、パーソナライゼーションの実施方法のパターンを変えるだろう。
大規模言語モデルを汎用インターフェースとして活用することにより、パーソナライズシステムはユーザ要求を計画にコンパイルすることができる。
論文 参考訳(メタデータ) (2023-07-31T02:48:56Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T08:02:18Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
フェデレートラーニング(Federated Learning)では、複数のコンピューティングユニット(ユーザ)にまたがるモデルをトレーニングすることを目的としています。
本稿では,現在あるいは新規利用者が自身のデータに対して1段階ないし数段階の勾配降下を実行することで,ローカルデータセットに容易に適応できるような,初歩的な共有モデルを見つけることを目標とする,フェデレーション学習のパーソナライズされたバリエーションについて検討する。
論文 参考訳(メタデータ) (2020-02-19T01:08:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。