論文の概要: LLMs + Persona-Plug = Personalized LLMs
- arxiv url: http://arxiv.org/abs/2409.11901v1
- Date: Wed, 18 Sep 2024 11:54:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 17:50:39.187393
- Title: LLMs + Persona-Plug = Personalized LLMs
- Title(参考訳): LLMs + Persona-Plug = Personalized LLMs
- Authors: Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou,
- Abstract要約: パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
- 参考スコア(独自算出の注目度): 41.60364110693824
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, \ours{}. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
- Abstract(参考訳): パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
ユーザごとにパーソナライズされた独自のLLMを微調整する場合もある。
代替的なアプローチは、ユーザの関連する歴史的テキストをデモとして検索することで、プラグアンドプレイ方式でパーソナライズ情報を導入する。
しかし、この検索ベースの戦略は、ユーザ履歴の連続性を損なう可能性があり、ユーザの全体的なスタイルやパターンをキャプチャできないため、サブ最適パフォーマンスにつながる。
これらの課題に対処するために,新たにパーソナライズされた LLM モデルである \ours{} を提案する。
軽量なプラグインユーザ埋め込みモジュールを通じて、過去のコンテキストをすべてモデル化することで、個々の個人に固有の埋め込みを構築する。
この埋め込みをタスク入力にアタッチすることで、LLMはユーザの習慣や好みをよりよく理解し、よりパーソナライズされたアウトプットを生成することができる。
言語モデルパーソナライゼーション(LaMP)ベンチマークにおける多種多様なタスクに関する大規模な実験により、提案モデルが既存のパーソナライズされたLCMアプローチを著しく上回ることを示した。
関連論文リスト
- Personalization of Large Language Models: A Survey [131.00650432814268]
大規模言語モデル(LLM)のパーソナライゼーションは、最近、広範囲のアプリケーションでますます重要になっている。
パーソナライズ LLM に関する既存の研究の多くは、(a)パーソナライズされたテキスト生成、または(b)レコメンデーションシステムのようなパーソナライズに関連する下流アプリケーションに LLM を活用することに集中している。
パーソナライズされたLSM使用のための分類を導入し、主要な違いと課題を要約する。
論文 参考訳(メタデータ) (2024-10-29T04:01:11Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
本稿では,MLLMのパーソナライズのためのRAP(Retrieval Augmented Personalization)フレームワークを紹介する。
RAPは、外部データベースを更新することで、リアルタイムの概念編集を可能にする。
RAP-MLLMは、追加の微調整なしで無限の視覚概念に一般化することができる。
論文 参考訳(メタデータ) (2024-10-17T09:10:26Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
調整可能な大きな言語モデル(LLM)をトレーニングします。
木構造における3K以上の多ターン会話を含む多ターン嗜好データセットを開発した。
評価のために、慎重に選択された100のサンプルと、会話中にカスタマイズされたアライメント性能を測定するために適切に設計されたメトリクスからなるALOEベンチマークを確立する。
論文 参考訳(メタデータ) (2024-10-04T17:48:29Z) - PersonalLLM: Tailoring LLMs to Individual Preferences [11.717169516971856]
我々は、特定のユーザに対して最大限のメリットを提供するためにLLMを適用することに焦点を当てた、PersonalLLMという公開ベンチマークを提示する。
我々は、ユーザーが不均一な潜伏傾向を示すことを期待する高品質な回答と組み合わせたオープンエンドプロンプトをキュレートする。
私たちのデータセットと生成された個人性は、パーソナライズアルゴリズムを開発するための革新的なテストベッドを提供します。
論文 参考訳(メタデータ) (2024-09-30T13:55:42Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
ユーザパーソナライズのためのNLPモデルの構築と評価のための新しいデータセットであるPEFT-Uベンチマークを紹介する。
多様なユーザ中心タスクのコンテキストにおいて、LLMを効率よくパーソナライズし、ユーザ固有の嗜好に適合させるという課題について検討する。
論文 参考訳(メタデータ) (2024-07-25T14:36:18Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - PMG : Personalized Multimodal Generation with Large Language Models [20.778869086174137]
本稿では,大規模言語モデル(LLM)を用いたパーソナライズされたマルチモーダル生成手法を提案する。
2つのデータセットに関する広範な実験を通じて、その応用を実証し、その性能を検証する。
PMGのパーソナライゼーションはLPIPSで最大8%向上し, 生成精度は向上した。
論文 参考訳(メタデータ) (2024-04-07T03:05:57Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
大規模言語モデル(LLM)のパーソナライゼーションはますます重要になっている。
1つのPEFT Per User (OPPU) は、パーソナライズされたパラメータ効率の微調整(PEFT)モジュールを使用して、ユーザ固有の行動パターンと好みを保存する。
OPPUは、LaMPベンチマークの7つのタスクで既存のプロンプトベースのメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-06T21:03:52Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
パーソナライゼーションは自然言語処理(NLP)システムにおけるユーザエクスペリエンスにおいて重要な要素である。
LLM(Large Language Models)の出現によって、重要な疑問は、これらのモデルを使ってユーザエクスペリエンスをよりパーソナライズする方法である。
LLMが生成するタスク対応ユーザ要約を用いた,新しい要約型パーソナライゼーションを提案する。
論文 参考訳(メタデータ) (2023-10-30T23:40:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。