Privacy Threats and Countermeasures in Federated Learning for Internet of Things: A Systematic Review
- URL: http://arxiv.org/abs/2407.18096v1
- Date: Thu, 25 Jul 2024 15:01:56 GMT
- Title: Privacy Threats and Countermeasures in Federated Learning for Internet of Things: A Systematic Review
- Authors: Adel ElZemity, Budi Arief,
- Abstract summary: Federated Learning in the Internet of Things (IoT) might introduce significant privacy and security concerns.
We systematically analysed recent literature to identify privacy threats in FL within IoT environments.
We evaluated the defensive measures that can be employed to mitigate these threats.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) in the Internet of Things (IoT) environments can enhance machine learning by utilising decentralised data, but at the same time, it might introduce significant privacy and security concerns due to the constrained nature of IoT devices. This represents a research challenge that we aim to address in this paper. We systematically analysed recent literature to identify privacy threats in FL within IoT environments, and evaluate the defensive measures that can be employed to mitigate these threats. Using a Systematic Literature Review (SLR) approach, we searched five publication databases (Scopus, IEEE Xplore, Wiley, ACM, and Science Direct), collating relevant papers published between 2017 and April 2024, a period which spans from the introduction of FL until now. Guided by the PRISMA protocol, we selected 49 papers to focus our systematic review on. We analysed these papers, paying special attention to the privacy threats and defensive measures -- specifically within the context of IoT -- using inclusion and exclusion criteria tailored to highlight recent advances and critical insights. We identified various privacy threats, including inference attacks, poisoning attacks, and eavesdropping, along with defensive measures such as Differential Privacy and Secure Multi-Party Computation. These defences were evaluated for their effectiveness in protecting privacy without compromising the functional integrity of FL in IoT settings. Our review underscores the necessity for robust and efficient privacy-preserving strategies tailored for IoT environments. Notably, there is a need for strategies against replay, evasion, and model stealing attacks. Exploring lightweight defensive measures and emerging technologies such as blockchain may help improve the privacy of FL in IoT, leading to the creation of FL models that can operate under variable network conditions.
Related papers
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.
Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.
This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unraveling Attacks in Machine Learning-based IoT Ecosystems: A Survey
and the Open Libraries Behind Them [9.55194238764852]
The Internet of Things (IoT) has brought forth an era of unprecedented connectivity, with an estimated 80 billion smart devices expected to be in operation by the end of 2025.
Machine Learning (ML) serves as a crucial technology, not only for analyzing IoT-generated data but also for diverse applications within the IoT ecosystem.
This paper embarks on a comprehensive exploration of the security threats arising from ML's integration into various facets of IoT.
arXiv Detail & Related papers (2024-01-22T06:52:35Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
The evolution of privacy-preserving Federated Learning (FL) has led to an increasing demand for implementing the right to be forgotten.
The implementation of selective forgetting is particularly challenging in FL due to its decentralized nature.
Federated Unlearning (FU) emerges as a strategic solution to address the increasing need for data privacy.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Fed-LSAE: Thwarting Poisoning Attacks against Federated Cyber Threat Detection System via Autoencoder-based Latent Space Inspection [0.0]
In cybersecurity, the sensitive data along with the contextual information and high-quality labeling play an essential role.
In this paper, we investigate a novel robust aggregation method for federated learning, namely Fed-LSAE, which takes advantage of latent space representation.
The experimental results on the CIC-ToN-IoT and N-BaIoT datasets confirm the feasibility of our defensive mechanism against cutting-edge poisoning attacks.
arXiv Detail & Related papers (2023-09-20T04:14:48Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - A Systematic Literature Review on Blockchain Enabled Federated Learning
Framework for Internet of Vehicles [1.0499611180329804]
Federated Learning (FL) has been proven as an emerging idea to protect IoVs data privacy and security.
We present a comprehensive survey on the application and implementation of BC-Enabled Learning frameworks for IoVs.
arXiv Detail & Related papers (2022-03-10T07:06:04Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.