Position Paper: Rethinking Privacy in RL for Sequential Decision-making in the Age of LLMs
- URL: http://arxiv.org/abs/2504.11511v1
- Date: Tue, 15 Apr 2025 10:45:55 GMT
- Title: Position Paper: Rethinking Privacy in RL for Sequential Decision-making in the Age of LLMs
- Authors: Flint Xiaofeng Fan, Cheston Tan, Roger Wattenhofer, Yew-Soon Ong,
- Abstract summary: We argue for a new privacy paradigm built on four core principles: multi-scale protection, behavioral pattern protection, collaborative privacy preservation, and context-aware adaptation.<n>These principles expose inherent tensions between privacy, utility, and interpretability that must be navigated as RL systems become more pervasive in high-stakes domains like healthcare, autonomous vehicles, and decision support systems powered by LLMs.
- Score: 46.828146821060265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of reinforcement learning (RL) in critical real-world applications demands a fundamental rethinking of privacy in AI systems. Traditional privacy frameworks, designed to protect isolated data points, fall short for sequential decision-making systems where sensitive information emerges from temporal patterns, behavioral strategies, and collaborative dynamics. Modern RL paradigms, such as federated RL (FedRL) and RL with human feedback (RLHF) in large language models (LLMs), exacerbate these challenges by introducing complex, interactive, and context-dependent learning environments that traditional methods do not address. In this position paper, we argue for a new privacy paradigm built on four core principles: multi-scale protection, behavioral pattern protection, collaborative privacy preservation, and context-aware adaptation. These principles expose inherent tensions between privacy, utility, and interpretability that must be navigated as RL systems become more pervasive in high-stakes domains like healthcare, autonomous vehicles, and decision support systems powered by LLMs. To tackle these challenges, we call for the development of new theoretical frameworks, practical mechanisms, and rigorous evaluation methodologies that collectively enable effective privacy protection in sequential decision-making systems.
Related papers
- Privacy-Preserving Large Language Models: Mechanisms, Applications, and Future Directions [0.0]
This survey explores the landscape of privacy-preserving mechanisms tailored for large language models.<n>We examine their efficacy in addressing key privacy challenges, such as membership inference and model inversion attacks.<n>By synthesizing state-of-the-art approaches and future trends, this paper provides a foundation for developing robust, privacy-preserving large language models.
arXiv Detail & Related papers (2024-12-09T00:24:09Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
Federated Learning is a privacy preserving decentralized machine learning paradigm.<n>Recent research has revealed that private ground truth data can be recovered through a gradient technique known as Deep Leakage.<n>This paper introduces the FEDLAD Framework (Federated Evaluation of Deep Leakage Attacks and Defenses), a comprehensive benchmark for evaluating Deep Leakage attacks and defenses.
arXiv Detail & Related papers (2024-11-05T11:42:26Z) - Privacy in Federated Learning [0.0]
Federated Learning (FL) represents a significant advancement in distributed machine learning.
This chapter delves into the core privacy concerns within FL, including the risks of data reconstruction, model inversion attacks, and membership inference.
It examines the trade-offs between model accuracy and privacy, emphasizing the importance of balancing these factors in practical implementations.
arXiv Detail & Related papers (2024-08-12T18:41:58Z) - Reinforcement Learning-Based Approaches for Enhancing Security and Resilience in Smart Control: A Survey on Attack and Defense Methods [0.3626013617212667]
Reinforcement Learning (RL) learns to make decisions based on real-world experiences.
This paper reviews the latest adversarial RL threats and outlines effective defense strategies tailored to safeguard these applications.
By concentrating on the smart grid and smart home scenarios, this survey equips ML developers and researchers with the insights needed to secure RL applications.
arXiv Detail & Related papers (2024-02-23T21:48:50Z) - Conservative and Risk-Aware Offline Multi-Agent Reinforcement Learning [33.48496141312585]
Reinforcement learning (RL) has been widely adopted for controlling and optimizing complex engineering systems such as next-generation wireless networks.
An important challenge in adopting RL is the need for direct access to the physical environment.
We propose an offline MARL scheme that integrates distributional RL and conservative Q-learning to address the environment's inherent aleatoric uncertainty.
arXiv Detail & Related papers (2024-02-13T12:49:22Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
We show that COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds.<n>As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks.<n>This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
arXiv Detail & Related papers (2024-02-04T09:58:42Z) - Hierarchical Framework for Interpretable and Probabilistic Model-Based
Safe Reinforcement Learning [1.3678669691302048]
This paper proposes a novel approach for the use of deep reinforcement learning in safety-critical systems.
It combines the advantages of probabilistic modeling and reinforcement learning with the added benefits of interpretability.
arXiv Detail & Related papers (2023-10-28T20:30:57Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
We introduce the study of reinforcement learning with stepwise fairness constraints.
We provide learning algorithms with strong theoretical guarantees in regard to policy optimality and fairness violation.
arXiv Detail & Related papers (2022-11-08T04:06:23Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z) - EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
and Online RL [48.552287941528]
Off-policy reinforcement learning holds the promise of sample-efficient learning of decision-making policies.
In the offline RL setting, standard off-policy RL methods can significantly underperform.
We introduce Expected-Max Q-Learning (EMaQ), which is more closely related to the resulting practical algorithm.
arXiv Detail & Related papers (2020-07-21T21:13:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.