Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics
- URL: http://arxiv.org/abs/2407.18108v1
- Date: Thu, 25 Jul 2024 15:12:46 GMT
- Title: Graph Neural Ordinary Differential Equations for Coarse-Grained Socioeconomic Dynamics
- Authors: James Koch, Pranab Roy Chowdhury, Heng Wan, Parin Bhaduri, Jim Yoon, Vivek Srikrishnan, W. Brent Daniel,
- Abstract summary: We present a data-driven machine-learning approach for modeling space-time socioeconomic dynamics.
Our findings, from a case study of Baltimore, MD, indicate that this machine learning-augmented coarse-grained model serves as a powerful instrument.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven machine-learning approach for modeling space-time socioeconomic dynamics. Through coarse-graining fine-scale observations, our modeling framework simplifies these complex systems to a set of tractable mechanistic relationships -- in the form of ordinary differential equations -- while preserving critical system behaviors. This approach allows for expedited 'what if' studies and sensitivity analyses, essential for informed policy-making. Our findings, from a case study of Baltimore, MD, indicate that this machine learning-augmented coarse-grained model serves as a powerful instrument for deciphering the complex interactions between social factors, geography, and exogenous stressors, offering a valuable asset for system forecasting and resilience planning.
Related papers
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Data driven modeling for self-similar dynamics [1.0790314700764785]
We introduce a multiscale neural network framework that incorporates self-similarity as prior knowledge.
For deterministic dynamics, our framework can discern whether the dynamics are self-similar.
Our method can identify the power law exponents in self-similar systems.
arXiv Detail & Related papers (2023-10-12T12:39:08Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
We show that our system can be used to discover interpretable models from real-world data in economics and sociology.
We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research.
arXiv Detail & Related papers (2022-10-02T16:25:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
We consider a case study the macroscopic motion emerging from a system of globally coupled maps.
We build a coarse-grained Markov process for the macroscopic dynamics both with a machine learning approach and with a direct numerical computation of the transition probability of the coarse-grained process.
We are able to infer important information about the effective dimension of the attractor, the persistence of memory effects and the multi-scale structure of the dynamics.
arXiv Detail & Related papers (2020-11-08T15:38:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.