論文の概要: Effects of Scale on Language Model Robustness
- arxiv url: http://arxiv.org/abs/2407.18213v3
- Date: Thu, 24 Oct 2024 04:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:01:09.567220
- Title: Effects of Scale on Language Model Robustness
- Title(参考訳): スケールが言語モデルロバスト性に及ぼす影響
- Authors: Nikolaus Howe, Ian McKenzie, Oskar Hollinsworth, Michał Zajac, Tom Tseng, Aaron Tucker, Pierre-Luc Bacon, Adam Gleave,
- Abstract要約: 逆向きに訓練された大規模モデルは、より小さなモデルと比較して、訓練中に見えないような攻撃に対して、より速く、より良く一般化できることが示される。
また、計算量の増加による悪用/防御のバランスを分析し、ある設定で同等性を見つけ、他の設定で悪用する利点を見つけます。
- 参考スコア(独自算出の注目度): 7.725206196110384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models exhibit scaling laws, whereby increasing model and dataset size yields predictable decreases in negative log likelihood, unlocking a dazzling array of capabilities. This phenomenon spurs many companies to train ever larger models in pursuit of ever improved performance. Yet, these models are vulnerable to adversarial inputs such as ``jailbreaks'' and prompt injections that induce models to perform undesired behaviors, posing a growing risk as models become more capable. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically in the classification setting, finding that without explicit defense training, larger models tend to be modestly more robust on most tasks, though the effect is not reliable. Even with the advantage conferred by scale, undefended models remain easy to attack in absolute terms, and we thus turn our attention to explicitly training models for adversarial robustness, which we show to be a much more compute-efficient defense than scaling model size alone. In this setting, we also observe that adversarially trained larger models generalize faster and better to modified attacks not seen during training when compared with smaller models. Finally, we analyze the offense/defense balance of increasing compute, finding parity in some settings and an advantage for offense in others, suggesting that adversarial training alone is not sufficient to solve robustness, even at greater model scales.
- Abstract(参考訳): 言語モデルはスケーリングの法則を示しており、モデルとデータセットのサイズが増加すると、負のログ可能性の予測可能な減少が生まれ、めちゃくちゃな機能列がアンロックされる。
この現象は、多くの企業がより大規模なモデルを訓練し、パフォーマンスの向上を追求するきっかけとなった。
しかし、これらのモデルは '`jailbreaks'' のような敵の入力に対して脆弱であり、望ましくない振る舞いをモデルに誘導するインジェクションを誘導し、モデルがより有能になるにつれてリスクが増大する。
以前の研究は、コンピュータビジョンモデルがモデルとデータのスケーリングによってより堅牢になることを示している。
本研究は, 明示的な防御訓練がなければ, 多くのタスクにおいて, より大きなモデルの方がわずかに頑健である傾向にあるが, 信頼性は低い。
スケールによって与えられる優位性にもかかわらず、無防備なモデルは絶対的に攻撃しやすく、従って、敵の強靭性に対する明示的なトレーニングモデルに注意を向ける。
この設定では、逆向きに訓練されたより大きなモデルがより高速に一般化され、より小さなモデルと比較した場合、トレーニング中に見えない修正攻撃がより良くなることも観察する。
最後に,計算量の増加による悪用/防御バランスを分析し,ある設定で同等性を見つけ,他の設定で悪用する利点を見出した結果,より大規模なモデルスケールでも,敵の訓練だけでは堅牢性を解決するには不十分であることが示唆された。
関連論文リスト
- Scaling Laws for Black box Adversarial Attacks [37.744814957775965]
敵の例では、クロスモデル転送可能性を示し、ブラックボックスモデルを攻撃することができる。
モデルアンサンブルは、複数のサロゲートモデルを同時に攻撃することで、転送可能性を改善する効果的な戦略である。
スケールされた攻撃はセマンティクスにおいてより良い解釈可能性をもたらし、モデルの共通の特徴がキャプチャーされることを示す。
論文 参考訳(メタデータ) (2024-11-25T08:14:37Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
スケーリング法則は、より少ないパラメータやより少ないトレーニングセットで訓練が容易なモデルから外挿することで、ターゲットとなる機械学習モデルの損失を予測する。
我々は1000以上のスケーリング法則を推定し、新しいモデルファミリーにおけるスケーリング法則を推定するためのベストプラクティスを導出する。
論文 参考訳(メタデータ) (2024-10-15T17:59:10Z) - Strong Model Collapse [16.071600606637908]
本稿では,モデル崩壊現象の強い形態が存在することを示す。
以上の結果から,最小の合成データであっても,モデル崩壊につながる可能性が示唆された。
大規模言語モデルの学習における現在の傾向に沿ったアプローチであるモデルサイズの増加が,モデル崩壊を悪化させるか緩和させるかを検討する。
論文 参考訳(メタデータ) (2024-10-07T08:54:23Z) - Scalable Ensembling For Mitigating Reward Overoptimisation [24.58937616758007]
ヒューマンフィードバックからの強化学習は、強力な命令追従モデルのための言語モデリングにおける大幅な進歩を可能にした。
ポリシーが学習したプロキシ"報酬モデルに過度に適合する傾向にあるため、これらのモデルの整合性は依然として急進的な課題である。
論文 参考訳(メタデータ) (2024-06-03T05:46:53Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
本稿では、モデルトレーニングを回避し、100のパブリックモデルからスケーリング法則を構築する観察的アプローチを提案する。
いくつかの創発現象が滑らかでシグモダルな挙動を辿り、小さなモデルから予測可能であることを示す。
言語モデル機能の改善が進むにつれて、Chain-of-ThoughtやSelf-Consistencyといったポストトレーニング介入の影響を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-17T17:49:44Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
解釈可能性は、モデルを現実世界にデプロイする際には、堅牢性と同じくらい不可欠です。
標準モデルは、ロバストと比較して敵の攻撃に対してより感受性が高く、その学習された表現は人間にはあまり意味がない。
論文 参考訳(メタデータ) (2023-07-04T13:51:55Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
言語モデルのスケールアップは、前例のないパフォーマンス向上につながった。
異なるサイズの言語モデルは事前学習中にどのように学習するか?
より大きな言語モデルはなぜ望ましい振る舞いを示すのか?
論文 参考訳(メタデータ) (2022-12-19T19:16:29Z) - Predicting on the Edge: Identifying Where a Larger Model Does Better [61.793778186198864]
小型モデルが最も不確実な例では,大規模モデルが最も改善されていることを示す。
小型モデルが不確実な場合,サンプルを大モデルにデフェクトするスイッチャーモデルにより,性能と資源利用の大幅な向上が達成できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:53:14Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
本研究では,計算によって制限されたNLPタスクのトランスフォーマーモデルに着目し,モデルサイズの影響について検討する。
まず最初に、より小さなTransformerモデルがイテレーション毎に高速に実行されているにもかかわらず、より広いモデルとより深いモデルがはるかに少ないステップで収束していることを示します。
これは、大きなTransformerモデルのトレーニング効率と小さなTransformerモデルの推論効率との間に明らかなトレードオフをもたらす。
論文 参考訳(メタデータ) (2020-02-26T21:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。