$K$-theory classification of Wannier localizability and detachable topological boundary states
- URL: http://arxiv.org/abs/2407.18273v1
- Date: Tue, 23 Jul 2024 07:27:41 GMT
- Title: $K$-theory classification of Wannier localizability and detachable topological boundary states
- Authors: Ken Shiozaki, Daichi Nakamura, Kenji Shimomura, Masatoshi Sato, Kohei Kawabata,
- Abstract summary: We show that non-Hermitian topology underlies detachable boundary states in Hermitian topological insulators and superconductors.
We classify Wannier localizability through the homomorphisms of topological phases from the tenfold Altland-Zirnbauer symmetry classes to the threefold Wigner-Dyson symmetry classes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A hallmark of certain topology, including the Chern number, is the obstruction to constructing exponentially localized Wannier functions in the bulk bands. Conversely, other types of topology do not necessarily impose Wannier obstructions. Remarkably, such Wannier-localizable topological insulators can host boundary states that are detachable from the bulk bands. In our accompanying Letter (D. Nakamura et al., arXiv:2407.09458), we demonstrate that non-Hermitian topology underlies detachable boundary states in Hermitian topological insulators and superconductors, thereby establishing their tenfold classification based on internal symmetry. Here, using $K$-theory, we elucidate the relationship between Wannier localizability and detachability of topological boundary states. From the boundary perspective, we classify intrinsic and extrinsic non-Hermitian topology, corresponding to nondetachable and detachable topological boundary states, respectively. From the bulk perspective, on the other hand, we classify Wannier localizability through the homomorphisms of topological phases from the tenfold Altland-Zirnbauer symmetry classes to the threefold Wigner-Dyson symmetry classes. Notably, these two approaches from the boundary and bulk perspectives lead to the same classification. We clarify this agreement and develop a unified understanding of the bulk-boundary correspondence on the basis of $K$-theory.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-Hermitian Origin of Wannier Localizability and Detachable Topological Boundary States [0.0]
We identify non-Hermitian boundary states as detachable topological boundary states.
We show that intrinsic non-Hermitian topology leads to the inevitable spectral flow.
Based on this connection and $K$-theory, we complete the classification of Wannier localizability and detachable topological boundary states.
arXiv Detail & Related papers (2024-07-12T17:41:19Z) - Non-Hermitian Topology in Hermitian Topological Matter [0.0]
We show that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology.
We also find the emergence of hinge states within effective non-Hermitian Hamiltonians at surfaces of three-dimensional topological insulators.
Our work uncovers a hidden connection between Hermitian and non-Hermitian topology, and provides an approach to identifying non-Hermitian topology in quantum matter.
arXiv Detail & Related papers (2024-05-16T11:59:15Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Bulk-boundary correspondence in point-gap topological phases [0.0]
A striking feature of non-Hermitian systems is the presence of two different types of topology.
One generalizes Hermitian topological phases, the other is intrinsic to non-Hermitian systems.
This Letter establishes the bulk-boundary correspondence in the point-gap topology in non-Hermitian systems.
arXiv Detail & Related papers (2022-05-31T09:26:44Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Extrinsic topology of Floquet anomalous boundary states in quantum walks [0.0]
We find that Floquet anomalous boundary states in quantum walks have similar extrinsic topological natures.
In contrast to higher order topological insulators, the extrinsic topology in quantum walks is manifest even for first-order topological phases.
arXiv Detail & Related papers (2021-12-06T16:56:28Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Non-Hermitian topological end breathers [0.0]
We show that non-Hermitian effects can give rise to a wider variety of topological solitons than was previously known to exist.
This demonstrates that non-Hermitian effects can give rise to a wider variety of topological solitons than was previously known to exist.
arXiv Detail & Related papers (2021-04-07T04:08:45Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.