Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
- URL: http://arxiv.org/abs/2407.18276v3
- Date: Mon, 9 Sep 2024 20:01:22 GMT
- Title: Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design
- Authors: Andre Nakkab, Sai Qian Zhang, Ramesh Karri, Siddharth Garg,
- Abstract summary: Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation.
However, LLM-assisted approaches for HDL generation struggle when handling complex tasks.
We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods.
- Score: 22.70660876673987
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback. Tools for the Recurrent Optimization via Machine Editing (ROME) method can be found at https://github.com/ajn313/ROME-LLM
Related papers
- LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - HiVeGen -- Hierarchical LLM-based Verilog Generation for Scalable Chip Design [55.54477725000291]
HiVeGen is a hierarchical Verilog generation framework that decomposes generation tasks into hierarchical submodules.
automatic Design Space Exploration (DSE) into hierarchy-aware prompt generation, introducing weight-based retrieval to enhance code reuse.
Real-time human-computer interaction to lower error-correction cost, significantly improving the quality of generated designs.
arXiv Detail & Related papers (2024-12-06T19:37:53Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
We introduce a novel framework for controlled generation in large language models (LLMs)
This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers.
We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality.
arXiv Detail & Related papers (2024-08-08T11:51:45Z) - RedCoast: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs [32.01139974519813]
We present RedCoast, a tool crafted to automate distributed training and inference for large language models (LLMs)
We also propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions.
As a result, Redco implementations exhibit significantly fewer lines of code compared to their official counterparts.
arXiv Detail & Related papers (2023-10-25T04:32:35Z) - Revisiting Prompt Engineering via Declarative Crowdsourcing [16.624577543520093]
Large language models (LLMs) are incredibly powerful at comprehending and generating data in the form of text, but are brittle and error-prone.
We put forth a vision for declarative prompt engineering.
Preliminary case studies on sorting, entity resolution, and imputation demonstrate the promise of our approach.
arXiv Detail & Related papers (2023-08-07T18:04:12Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Language Models Enable Simple Systems for Generating Structured Views of
Heterogeneous Data Lakes [15.214583657626697]
EVAPORATE is a prototype system powered by large language models (LLMs)
Code synthesis is cheap, but far less accurate than directly processing each document with the LLM.
We propose an extended code implementation, EVAPORATE-CODE+, which achieves better quality than direct extraction.
arXiv Detail & Related papers (2023-04-19T06:00:26Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.