The Structure of Financial Equity Research Reports -- Identification of the Most Frequently Asked Questions in Financial Analyst Reports to Automate Equity Research Using Llama 3 and GPT-4
- URL: http://arxiv.org/abs/2407.18327v1
- Date: Thu, 4 Jul 2024 15:58:02 GMT
- Title: The Structure of Financial Equity Research Reports -- Identification of the Most Frequently Asked Questions in Financial Analyst Reports to Automate Equity Research Using Llama 3 and GPT-4
- Authors: Adria Pop, Jan Spörer, Siegfried Handschuh,
- Abstract summary: The study analyzes 72 ERRs sentence-by-sentence, classifying their 48.7% sentences into 169 unique question archetypes.
We did not predefine the questions but derived them solely from the statements in the ERRs.
The research confirms that the current writing process of ERRs can likely benefit from additional automation, improving quality and efficiency.
- Score: 6.085131799375494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research dissects financial equity research reports (ERRs) by mapping their content into categories. There is insufficient empirical analysis of the questions answered in ERRs. In particular, it is not understood how frequently certain information appears, what information is considered essential, and what information requires human judgment to distill into an ERR. The study analyzes 72 ERRs sentence-by-sentence, classifying their 4940 sentences into 169 unique question archetypes. We did not predefine the questions but derived them solely from the statements in the ERRs. This approach provides an unbiased view of the content of the observed ERRs. Subsequently, we used public corporate reports to classify the questions' potential for automation. Answers were labeled "text-extractable" if the answers to the question were accessible in corporate reports. 78.7% of the questions in ERRs can be automated. Those automatable question consist of 48.2% text-extractable (suited to processing by large language models, LLMs) and 30.5% database-extractable questions. Only 21.3% of questions require human judgment to answer. We empirically validate using Llama-3-70B and GPT-4-turbo-2024-04-09 that recent advances in language generation and information extraction enable the automation of approximately 80% of the statements in ERRs. Surprisingly, the models complement each other's strengths and weaknesses well. The research confirms that the current writing process of ERRs can likely benefit from additional automation, improving quality and efficiency. The research thus allows us to quantify the potential impacts of introducing large language models in the ERR writing process. The full question list, including the archetypes and their frequency, will be made available online after peer review.
Related papers
- RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries.
This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus.
arXiv Detail & Related papers (2024-10-18T16:11:29Z) - I Could've Asked That: Reformulating Unanswerable Questions [89.93173151422636]
We evaluate open-source and proprietary models for reformulating unanswerable questions.
GPT-4 and Llama2-7B successfully reformulate questions only 26% and 12% of the time, respectively.
We publicly release the benchmark and the code to reproduce the experiments.
arXiv Detail & Related papers (2024-07-24T17:59:07Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
We present CLARINET, a system that asks informative clarification questions by choosing questions whose answers would maximize certainty in the correct candidate.
Our approach works by augmenting a large language model (LLM) to condition on a retrieval distribution, finetuning end-to-end to generate the question that would have maximized the rank of the true candidate at each turn.
arXiv Detail & Related papers (2024-04-28T18:21:31Z) - ExpertQA: Expert-Curated Questions and Attributed Answers [51.68314045809179]
We conduct human evaluation of responses from a few representative systems along various axes of attribution and factuality.
We collect expert-curated questions from 484 participants across 32 fields of study, and then ask the same experts to evaluate generated responses to their own questions.
The output of our analysis is ExpertQA, a high-quality long-form QA dataset with 2177 questions spanning 32 fields, along with verified answers and attributions for claims in the answers.
arXiv Detail & Related papers (2023-09-14T16:54:34Z) - Connecting Humanities and Social Sciences: Applying Language and Speech
Technology to Online Panel Surveys [2.0646127669654835]
We explore the application of language and speech technology to open-ended questions in a Dutch panel survey.
In an experimental wave respondents could choose to answer open questions via speech or keyboard.
We report the errors the ASR system produces and investigate the impact of these errors on downstream analyses.
arXiv Detail & Related papers (2023-02-21T10:52:15Z) - Question Answering Survey: Directions, Challenges, Datasets, Evaluation
Matrices [0.0]
The research directions of QA field are analyzed based on the type of question, answer type, source of evidence-answer, and modeling approach.
This detailed followed by open challenges of the field like automatic question generation, similarity detection and, low resource availability for a language.
arXiv Detail & Related papers (2021-12-07T08:53:40Z) - Answer Generation for Questions With Multiple Information Sources in
E-Commerce [0.0]
We propose a novel pipeline (MSQAP) that utilizes the rich information present in the aforementioned sources by separately performing relevancy and ambiguity prediction.
This is the first work in the e-commerce domain that automatically generates natural language answers combining the information present in diverse sources such as specifications, similar questions, and reviews data.
arXiv Detail & Related papers (2021-11-27T23:19:49Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
We present a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text.
We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers.
arXiv Detail & Related papers (2021-05-07T00:12:34Z) - Determining Question-Answer Plausibility in Crowdsourced Datasets Using
Multi-Task Learning [10.742152224470317]
We propose a novel task for automated quality analysis and data cleaning: question-answer (QA) plausibility.
Given a machine or user-generated question and a crowd-sourced response from a social media user, we determine if the question and response are valid.
We evaluate the ability of our models to generate a clean, usable question-answer dataset.
arXiv Detail & Related papers (2020-11-10T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.