Optimizing Code Runtime Performance through Context-Aware Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2501.16692v2
- Date: Wed, 29 Jan 2025 04:36:03 GMT
- Title: Optimizing Code Runtime Performance through Context-Aware Retrieval-Augmented Generation
- Authors: Manish Acharya, Yifan Zhang, Kevin Leach, Yu Huang,
- Abstract summary: Auto achieves a 7.3% improvement in execution efficiency over GPT-4o across common generated executable code.<n>This study introduces an in-context learning approach designed to bridge the gap by enabling LLMs to automatically generate optimized code.
- Score: 8.574686422653345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing software performance through automated code refinement offers a promising avenue for enhancing execution speed and efficiency. Despite recent advancements in LLMs, a significant gap remains in their ability to perform in-depth program analysis. This study introduces AUTOPATCH, an in-context learning approach designed to bridge this gap by enabling LLMs to automatically generate optimized code. Inspired by how programmers learn and apply knowledge to optimize software, AUTOPATCH incorporates three key components: (1) an analogy-driven framework to align LLM optimization with human cognitive processes, (2) a unified approach that integrates historical code examples and CFG analysis for context-aware learning, and (3) an automated pipeline for generating optimized code through in-context prompting. Experimental results demonstrate that AUTOPATCH achieves a 7.3% improvement in execution efficiency over GPT-4o across common generated executable code, highlighting its potential to advance automated program runtime optimization.
Related papers
- DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.
We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.
We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
Large Language Models (LLMs) are widely adopted for assisting in software development tasks.<n>We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code.
arXiv Detail & Related papers (2024-11-18T06:22:38Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
In a compound AI system, components such as an LLM call, a retriever, a code interpreter, or tools are interconnected.
Recent advancements enable end-to-end optimization of these parameters using an LLM.
This paper presents a survey of the principles and emerging trends in LLM-based optimization of compound AI systems.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler [0.10923877073891444]
We introduce the first RL environment for the MLIR compiler, dedicated to facilitating MLIR compiler research.
We also propose a novel formulation of the action space as a product of simpler action subspaces, enabling more efficient and effective optimizations.
arXiv Detail & Related papers (2024-09-17T10:49:45Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
Code written by developers usually suffers from efficiency problems and contain various performance bugs.
Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs)
We propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods.
arXiv Detail & Related papers (2024-08-22T06:59:46Z) - AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs [27.179391677757565]
We develop AutoVCoder, a framework that significantly improves the correctness of generating Verilog code.
Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach.
AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV.
arXiv Detail & Related papers (2024-07-21T16:42:45Z) - Should AI Optimize Your Code? A Comparative Study of Current Large Language Models Versus Classical Optimizing Compilers [0.0]
Large Language Models (LLMs) raise intriguing questions about the potential for AI-driven approaches to revolutionize code optimization methodologies.
This paper presents a comparative analysis between two state-of-the-art Large Language Models, GPT-4.0 and CodeLlama-70B, and traditional optimizing compilers.
arXiv Detail & Related papers (2024-06-17T23:26:41Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.<n>In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - CompilerDream: Learning a Compiler World Model for General Code Optimization [58.87557583347996]
We introduce CompilerDream, a model-based reinforcement learning approach to general code optimization.
It comprises a compiler world model that accurately simulates the intrinsic properties of optimization passes and an agent trained on this model to produce effective optimization strategies.
It excels across diverse datasets, surpassing LLVM's built-in optimizations and other state-of-the-art methods in both settings of value prediction and end-to-end code optimization.
arXiv Detail & Related papers (2024-04-24T09:20:33Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods.
This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization.
arXiv Detail & Related papers (2021-03-23T20:46:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.