論文の概要: Large Language Model Integrated Healthcare Cyber-Physical Systems Architecture
- arxiv url: http://arxiv.org/abs/2407.18407v1
- Date: Thu, 25 Jul 2024 21:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:59:16.808755
- Title: Large Language Model Integrated Healthcare Cyber-Physical Systems Architecture
- Title(参考訳): 大規模言語モデル統合型医療サイバー物理システムアーキテクチャ
- Authors: Malithi Wanniarachchi Kankanamge, Syed Mhamudul Hasan, Abdur R. Shahid, Ning Yang,
- Abstract要約: 本稿では,医療システムの効率を高めるために,大規模言語モデル(LLM)を統合するための革新的なアプローチを提案する。
LLMをさまざまな層に組み込むことで、HCPSは高度なAI機能を活用して、患者の成果を改善し、データ処理を前進させ、意思決定を強化することができる。
- 参考スコア(独自算出の注目度): 0.6772963470576693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber-physical systems have become an essential part of the modern healthcare industry. The healthcare cyber-physical systems (HCPS) combine physical and cyber components to improve the healthcare industry. While HCPS has many advantages, it also has some drawbacks, such as a lengthy data entry process, a lack of real-time processing, and limited real-time patient visualization. To overcome these issues, this paper represents an innovative approach to integrating large language model (LLM) to enhance the efficiency of the healthcare system. By incorporating LLM at various layers, HCPS can leverage advanced AI capabilities to improve patient outcomes, advance data processing, and enhance decision-making.
- Abstract(参考訳): サイバー物理システムは現代医療産業の不可欠な部分となっている。
医療用サイバー物理システム(HCPS)は、医療産業を改善するために物理部品とサイバー部品を組み合わせている。
HCPSには多くの利点があるが、長いデータ入力プロセス、リアルタイム処理の欠如、リアルタイム患者の可視化の制限など、いくつかの欠点もある。
これらの課題を克服するために、医療システムの効率を高めるために、大規模言語モデル(LLM)を統合する革新的なアプローチを示す。
LLMをさまざまな層に組み込むことで、HCPSは高度なAI機能を活用して、患者の成果を改善し、データ処理を前進させ、意思決定を強化することができる。
関連論文リスト
- Towards Human-AI Collaboration in Healthcare: Guided Deferral Systems with Large Language Models [1.2281181385434294]
大規模言語モデル(LLM)は、医療における様々なアプリケーションに有用な技術を提供する。
彼らの幻覚傾向は、批判的な意思決定の状況において受け入れ難い不確実性をもたらす。
人間とAIのコラボレーションは、より良い結果を得るために人間とAIの強みを組み合わせることで、この不確実性を軽減することができる。
本稿では,AIが人間の意思決定者に対してケースをデフェクトした場合にインテリジェントなガイダンスを提供する,新しいガイド付きデフェラルシステムを提案する。
論文 参考訳(メタデータ) (2024-06-11T12:41:54Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Hair and scalp disease detection using deep learning [0.3958317527488534]
本稿では, 皮膚科における先駆的アプローチについて紹介し, 毛髪・頭皮疾患の検出のための堅牢な方法を提案する。
提案手法は画像認識における有効性でよく知られている畳み込みニューラルネットワーク(CNN)に依存している。
本システムは, 早期診断・診断の非侵襲的かつ高効率な手段として, 皮膚科診断の進歩を示す。
論文 参考訳(メタデータ) (2024-03-09T04:49:40Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
大規模言語モデル(LLM)は、最近臨床応用においてその可能性を実証している。
本稿では,LLMを医療画像CADネットワークに統合する手法を提案する。
LLMの医用領域知識と論理的推論の強みを、既存の医用画像CADモデルの視覚理解能力と融合させることが目的である。
論文 参考訳(メタデータ) (2023-02-14T18:54:06Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - COVID-Net MLSys: Designing COVID-Net for the Clinical Workflow [101.45411528425939]
本研究では、機械学習とシステム(MLSys)を用いて、新型コロナウイルス患者のスクリーニングシステムの設計を行う。
COVID-Netシステムは、継続的に進化するCOVIDxデータセット、新型コロナウイルス患者検出のためのCOVID-Netディープニューラルネットワーク、および重症度評価のためのCOVID-Net Sディープニューラルネットワークで構成されている。
COVID-Netシステム内のディープニューラルネットワークは最先端のパフォーマンスを持ち、臨床診断支援のためにユーザーインターフェース(UI)に統合されるように設計されている。
論文 参考訳(メタデータ) (2021-09-14T04:13:24Z) - Smart Healthcare in the Age of AI: Recent Advances, Challenges, and
Future Prospects [3.3336265497547126]
スマートヘルスケアシステムは近年関心が高まりつつあるトピックであり、現代技術における大きな発展のためにますます必要となってきた。
本研究の目的は、健康モニタリングのためのウェアラブルやスマートフォンデバイス、疾患診断のための機械学習、環境支援生活環境向けに開発された社会ロボットを含む支援フレームワークなど、主要な分野を取り上げ、現在最先端のスマートヘルスケアシステムについて議論することである。
論文 参考訳(メタデータ) (2021-06-24T05:10:47Z) - Edge Computing For Smart Health: Context-aware Approaches,
Opportunities, and Challenges [13.506100532943162]
スマートヘルスケア(s-health)を実現する上で最も有望なアプローチは、エッジコンピューティング機能と次世代無線ネットワーク技術である。
我々はMECベースのアーキテクチャを構想し、ネットワーク内およびコンテキスト対応処理を実現する上でのメリットについて論じる。
このようなアーキテクチャを活用して効率的なデータ配信を実現する2つの主要な機能を示す。
論文 参考訳(メタデータ) (2020-04-15T19:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。