論文の概要: L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection
- arxiv url: http://arxiv.org/abs/2406.16913v1
- Date: Fri, 7 Jun 2024 12:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:31:46.728382
- Title: L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection
- Title(参考訳): L-SFAN:痛み行動検出のための軽量空間集中型注意ネットワーク
- Authors: Jorge Ortigoso-Narro, Fernando Diaz-de-Maria, Mohammad Mahdi Dehshibi, Ana Tajadura-Jiménez,
- Abstract要約: 慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
- 参考スコア(独自算出の注目度): 44.016805074560295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems. While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), recurrent neural networks, and graph-based neural networks, have limitations. These approaches often focus singularly on the temporal dimension or require complex architectures to exploit spatial interrelationships within multivariate time series data. To address these limitations, we introduce \hbox{L-SFAN}, a lightweight CNN architecture incorporating 2D filters designed to meticulously capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors. Our proposed model, enhanced with an oriented global pooling layer and multi-head self-attention mechanism, prioritizes critical features to better understand CLBP and achieves competitive classification accuracy. Experimental results on the EmoPain database demonstrate that our approach not only enhances performance metrics with significantly fewer parameters but also promotes model interpretability, offering valuable insights for clinicians in managing CLBP. This advancement underscores the potential of AI in transforming healthcare practices for chronic conditions like CLBP, providing a sophisticated framework for the nuanced analysis of complex biomedical data.
- Abstract(参考訳): 慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク、グラフベースのニューラルネットワークなど、現在のモデルには制限がある。
これらのアプローチはしばしば、時間次元に特異に集中するか、多変量時系列データ内の空間的相互関係を利用するために複雑なアーキテクチャを必要とする。
これらの制約に対処するために,モーションキャプチャと表面筋電図センサからデータを空間的・時間的に捉える2Dフィルタを組み込んだ軽量CNNアーキテクチャである \hbox{L-SFAN} を導入する。
提案手法は,指向性大域プール層と多頭部自己保持機構によって拡張され,CLBPをよりよく理解し,競合する分類精度を実現するために重要な特徴を優先する。
EmoPainデータベース上での実験結果から,本手法はパラメータが著しく少ない性能指標を向上するだけでなく,モデル解釈可能性も向上し,臨床医がCLBPの管理に有用であることを示す。
この進歩は、CLBPのような慢性疾患の医療実践を変革するAIの可能性を強調し、複雑なバイオメディカルデータの微妙な分析のための洗練されたフレームワークを提供する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - Knowledge Enhanced Conditional Imputation for Healthcare Time-series [9.937117045677923]
Conditional Self-Attention Imputation (CSAI)は、複雑な欠落データパターンの課題に対処するために設計された、新しいリカレントニューラルネットワークアーキテクチャである。
CSAIは、EHRデータ特性に特化して、現在の最先端のニューラルネットワークベースの計算手法を拡張している。
この研究は、アルゴリズム的計算を臨床的現実とより緊密に整合させることにより、ERHに適用されるニューラルネットワーク計算の状態を著しく改善する。
論文 参考訳(メタデータ) (2023-12-27T20:42:40Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
機能的磁気共鳴イメージング(fMRI)データから抽出した機能的接続性(FC)ネットワークを訓練したディープニューラルネットワークが人気を博している。
グラフニューラルネットワーク(GNN)のFCへの適用に関する最近の研究は、FCの時間変化特性を活用することにより、モデル予測の精度と解釈可能性を大幅に向上させることができることを示唆している。
高品質なfMRIデータとそれに対応するラベルを取得するための高コストは、実環境において彼らのアプリケーションにハードルをもたらす。
本研究では,動的FC内の時間情報を効果的に活用するためのSSL生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T16:14:43Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for
Classifying Imagery and Motor Signals in ECoG-Based BCIs [0.0]
本研究は,脳-コンピュータインタフェース(BCI)内での運動画像分類アルゴリズムを最適化することにより,領域を拡大することを目的とする。
我々は、次元削減のための教師なし手法、すなわち、一様多様体近似と投影(UMAP)とK-Nearest Neighbors(KNN)を利用する。
また,Long Short-Term Memory (LSTM) やConvolutional Neural Networks (CNN) といった教師付き手法を,分類タスクに活用することの必要性も評価した。
論文 参考訳(メタデータ) (2023-11-22T16:34:06Z) - An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning [14.353798949041698]
本稿では,空間時間グラフ学習のための適応型フェデレーション関連フレームワークであるFedRelを提案する。
フレームワークのコアとなるDynamic Inter-Intra Graph (DIIG)モジュールは、これらの機能を使用して空間時間グラフを生成することができる。
局所的なデータプライバシーを維持しながらモデルの一般化能力と性能を向上させるため、関連性駆動型フェデレーション学習モジュールを設計する。
論文 参考訳(メタデータ) (2022-06-07T16:12:17Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。