HDL-GPT: High-Quality HDL is All You Need
- URL: http://arxiv.org/abs/2407.18423v1
- Date: Thu, 25 Jul 2024 22:48:08 GMT
- Title: HDL-GPT: High-Quality HDL is All You Need
- Authors: Bhuvnesh Kumar, Saurav Nanda, Ganapathy Parthasarathy, Pawan Patil, Austin Tsai, Parivesh Choudhary,
- Abstract summary: This paper presents Hardware Description Language Generative Pre-trained Transformers (HDL-GPT)
HDL-GPT is a novel approach that leverages the vast repository of open-source High Definition Language (HDL) codes to train superior quality large code models.
We demonstrate improvements of 50% to 200% over SOTA HDL models on current benchmarks in tasks ranging from HDL circuit explanations, code generation, formal and simulation testbench creation, triaging bugs, and fixing them.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents Hardware Description Language Generative Pre-trained Transformers (HDL-GPT), a novel approach that leverages the vast repository of open-source High Definition Language (HDL) codes to train superior quality large code models. The core premise of this paper is the hypothesis that high-quality HDL is all you need to create models with exceptional performance and broad zero-shot generalization abilities. The paper elucidates the methods employed for the curation and augmentation of large corpora from open-source HDL code, transforming highly variable quality data into high-quality data through careful prompting and context maintenance. We demonstrate that the careful selection, filtering, and augmentation of data across HDLs can yield powerful models that surpass current state-of-the-art models. We also explore the impact of different fine-tuning methods on the quality of results. We describe experimental results across a range of fine-tuned SOTA LLMs, substantiating our claims. We demonstrate improvements of 50% to 200% over SOTA HDL models on current benchmarks in tasks ranging from HDL circuit explanations, code generation, formal and simulation testbench creation, triaging bugs, and fixing them. HDL-GPT opens new avenues for the development of advanced model training techniques for circuit design tasks.
Related papers
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
Large language models (LLMs) can be employed for programming languages such as Python and C++.
This paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design.
arXiv Detail & Related papers (2025-02-19T17:53:59Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.
We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.
Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval [80.96706764868898]
We present a new Low-light Image Enhancement (LLIE) network via Generative LAtent feature based codebook REtrieval (GLARE)
We develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook.
Experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data.
arXiv Detail & Related papers (2024-07-17T09:40:15Z) - Classification-Based Automatic HDL Code Generation Using LLMs [9.630310313347657]
Large language models (LLMs) have demonstrated the ability to generate hardware description language (HDL) code for digital circuits.
LLMs suffer from the hallucination problem, which leads to the generation of incorrect HDL code or misunderstanding of specifications.
We introduce a human-expert-inspired method to mitigate the hallucination of LLMs and improve the performance in HDL code generation.
arXiv Detail & Related papers (2024-07-04T09:00:13Z) - VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation [4.700008016247411]
This paper introduces a comprehensive evaluation framework designed specifically for assessing VHDL code generation task.
This dataset is constructed by translating a collection of Verilog evaluation problems to VHDL and aggregating publicly available VHDL problems, resulting in a total of 202 problems.
To assess the functional correctness of the generated VHDL code, we utilize a curated set of self-verifying testbenches.
arXiv Detail & Related papers (2024-06-06T00:06:50Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - HDLdebugger: Streamlining HDL debugging with Large Language Models [20.09481664579469]
In the domain of chip design, Hardware Description Languages (HDLs) play a pivotal role.
Despite the strong capabilities of Large Language Models (LLMs) in generating, completing, and inspecting software code, their utilization in the specialized field of HDL debug has been limited.
We propose a framework, namely HDLger, which consists of HDL data generation via a reverse engineering approach, a search engine for retrieval-augmented generation, and a retrieval-augmented LLM fine-tuning approach.
Our experiments, conducted on an HDL code dataset sourced from Huawei, reveal that HDLger outperforms 13 cutting
arXiv Detail & Related papers (2024-03-18T11:19:37Z) - Rethinking the Instruction Quality: LIFT is What You Need [20.829372251475476]
Existing quality improvement methods alter instruction data through dataset expansion or curation.
We propose LIFT (LLM Instruction Fusion Transfer), a novel and versatile paradigm designed to elevate the instruction quality to new heights.
Experimental results demonstrate that, even with a limited quantity of high-quality instruction data selected by our paradigm, LLMs consistently uphold robust performance across various tasks.
arXiv Detail & Related papers (2023-12-12T03:30:21Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.