HDLdebugger: Streamlining HDL debugging with Large Language Models
- URL: http://arxiv.org/abs/2403.11671v1
- Date: Mon, 18 Mar 2024 11:19:37 GMT
- Title: HDLdebugger: Streamlining HDL debugging with Large Language Models
- Authors: Xufeng Yao, Haoyang Li, Tsz Ho Chan, Wenyi Xiao, Mingxuan Yuan, Yu Huang, Lei Chen, Bei Yu,
- Abstract summary: In the domain of chip design, Hardware Description Languages (HDLs) play a pivotal role.
Despite the strong capabilities of Large Language Models (LLMs) in generating, completing, and inspecting software code, their utilization in the specialized field of HDL debug has been limited.
We propose a framework, namely HDLger, which consists of HDL data generation via a reverse engineering approach, a search engine for retrieval-augmented generation, and a retrieval-augmented LLM fine-tuning approach.
Our experiments, conducted on an HDL code dataset sourced from Huawei, reveal that HDLger outperforms 13 cutting
- Score: 20.09481664579469
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the domain of chip design, Hardware Description Languages (HDLs) play a pivotal role. However, due to the complex syntax of HDLs and the limited availability of online resources, debugging HDL codes remains a difficult and time-intensive task, even for seasoned engineers. Consequently, there is a pressing need to develop automated HDL code debugging models, which can alleviate the burden on hardware engineers. Despite the strong capabilities of Large Language Models (LLMs) in generating, completing, and debugging software code, their utilization in the specialized field of HDL debugging has been limited and, to date, has not yielded satisfactory results. In this paper, we propose an LLM-assisted HDL debugging framework, namely HDLdebugger, which consists of HDL debugging data generation via a reverse engineering approach, a search engine for retrieval-augmented generation, and a retrieval-augmented LLM fine-tuning approach. Through the integration of these components, HDLdebugger can automate and streamline HDL debugging for chip design. Our comprehensive experiments, conducted on an HDL code dataset sourced from Huawei, reveal that HDLdebugger outperforms 13 cutting-edge LLM baselines, displaying exceptional effectiveness in HDL code debugging.
Related papers
- Exploring Code Language Models for Automated HLS-based Hardware Generation: Benchmark, Infrastructure and Analysis [49.998130983414924]
Large language models (LLMs) can be employed for programming languages such as Python and C++.
This paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design.
arXiv Detail & Related papers (2025-02-19T17:53:59Z) - Enabling New HDLs with Agents [0.24578723416255746]
Large Language Models (LLMs) based agents are transforming the programming language landscape.
This paper investigates the challenges and solutions of enabling LLMs for Hardware Description Languages (HDLs)
It introduces HDLAgent, an AI agent optimized for LLMs with limited knowledge of various HDLs.
arXiv Detail & Related papers (2024-12-31T20:37:20Z) - HiVeGen -- Hierarchical LLM-based Verilog Generation for Scalable Chip Design [55.54477725000291]
HiVeGen is a hierarchical Verilog generation framework that decomposes generation tasks into hierarchical submodules.
automatic Design Space Exploration (DSE) into hierarchy-aware prompt generation, introducing weight-based retrieval to enhance code reuse.
Real-time human-computer interaction to lower error-correction cost, significantly improving the quality of generated designs.
arXiv Detail & Related papers (2024-12-06T19:37:53Z) - HDL-GPT: High-Quality HDL is All You Need [0.0]
This paper presents Hardware Description Language Generative Pre-trained Transformers (HDL-GPT)
HDL-GPT is a novel approach that leverages the vast repository of open-source High Definition Language (HDL) codes to train superior quality large code models.
We demonstrate improvements of 50% to 200% over SOTA HDL models on current benchmarks in tasks ranging from HDL circuit explanations, code generation, formal and simulation testbench creation, triaging bugs, and fixing them.
arXiv Detail & Related papers (2024-07-25T22:48:08Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
Large Language Models (LLMs) have shown outstanding breakthroughs in code generation.
Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs.
We propose a textbfCase2Code task by exploiting the expressiveness and correctness of programs.
arXiv Detail & Related papers (2024-07-17T11:35:00Z) - Classification-Based Automatic HDL Code Generation Using LLMs [9.630310313347657]
Large language models (LLMs) have demonstrated the ability to generate hardware description language (HDL) code for digital circuits.
LLMs suffer from the hallucination problem, which leads to the generation of incorrect HDL code or misunderstanding of specifications.
We introduce a human-expert-inspired method to mitigate the hallucination of LLMs and improve the performance in HDL code generation.
arXiv Detail & Related papers (2024-07-04T09:00:13Z) - VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation [4.700008016247411]
This paper introduces a comprehensive evaluation framework designed specifically for assessing VHDL code generation task.
This dataset is constructed by translating a collection of Verilog evaluation problems to VHDL and aggregating publicly available VHDL problems, resulting in a total of 202 problems.
To assess the functional correctness of the generated VHDL code, we utilize a curated set of self-verifying testbenches.
arXiv Detail & Related papers (2024-06-06T00:06:50Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.