論文の概要: Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
- arxiv url: http://arxiv.org/abs/2407.18468v1
- Date: Fri, 26 Jul 2024 02:34:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:39:47.845219
- Title: Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
- Title(参考訳): 帯域制約付き生成モデルのための拡散駆動セマンティック通信
- Authors: Lei Guo, Wei Chen, Yuxuan Sun, Bo Ai, Nikolaos Pappas, Tony Quek,
- Abstract要約: 本稿では,帯域制限付き生成モデルのための,高度なVAEベースの圧縮を用いた拡散駆動型セマンティック通信フレームワークを提案する。
実験の結果,ピーク信号対雑音比 (PSNR) などの画素レベルの指標と,LPIPS (Learning Perceptual Image patch similarity) のような意味的指標が大幅に改善された。
- 参考スコア(独自算出の注目度): 27.049330099874396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
- Abstract(参考訳): 近年、拡散モデルはAIGC(AI-Generation Content)で広く利用されている。
セマンティックコミュニケーションと組み合わせて、拡散モデルは、妄想、データ再構成、コンテンツ生成といったタスクに使用される。
しかし、既存の拡散に基づく生成モデルは、無線通信における帯域幅制限を考慮しない。
本稿では,帯域制限付き生成モデルのための,高度なVAEベースの圧縮を用いた拡散駆動型セマンティック通信フレームワークを提案する。
我々の設計したアーキテクチャは拡散モデルを利用しており、無線チャネルを経由した信号伝達プロセスが拡散の前進過程として機能する。
帯域幅の要求を低減するため,受信側で再パラメータ化を行う可変オートエンコーダをベースとしたダウンサンプリングモジュールとペアアップサンプリングモジュールを組み込んで,回収した特徴がガウス分布に適合することを確かめる。
さらに,提案システムにおける損失関数を導出し,その性能を総合実験により評価する。
実験の結果,ピーク信号対雑音比 (PSNR) やLPIPS (Learning Perceptual Image patch similarity) のような意味的指標など,画素レベルの指標が大幅に改善された。
これらの拡張は、ディープジョイントソースチャネル符号化(DJSCC)と比較して、圧縮速度とSNRに深く関わっている。
関連論文リスト
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
ノイズから関節分布を生成する拡散型ATRフレームワーク(DiffATR)を提案する。
優れたパフォーマンスを持つAudioCapsとClothoデータセットの実験は、我々のアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-16T06:33:26Z) - Generating High Dimensional User-Specific Wireless Channels using Diffusion Models [28.270917362301972]
本稿では拡散モデルを用いて合成無線チャネルデータを生成する新しい手法を提案する。
我々は、ユーザ位置を条件入力として合成された高忠実度チャネルサンプルを生成し、測定不足を克服するために、より大きな拡張データセットを作成する。
論文 参考訳(メタデータ) (2024-09-05T22:08:28Z) - Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework [27.524671767937512]
本稿では,単一ユーザシナリオを対象とした新しいジェネレーティブAIセマンティックコミュニケーション(GSC)システムを提案する。
送信側では、Swin Transformerをベースとしたジョイントソースチャネル符号化機構を用いて、効率的なセマンティック特徴抽出を行う。
受信側では、高度な拡散モデル(DM)が劣化した信号から高品質な画像を再構成し、知覚の詳細を高める。
論文 参考訳(メタデータ) (2024-07-31T06:08:51Z) - Latent Diffusion Model-Enabled Real-Time Semantic Communication Considering Semantic Ambiguities and Channel Noises [18.539501941328393]
本稿では, 遅延拡散モデル対応SemComシステムを構築し, 既存システムと比較して3つの改良点を提案する。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - Adaptive Semantic-Enhanced Denoising Diffusion Probabilistic Model for Remote Sensing Image Super-Resolution [7.252121550658619]
Denoising Diffusion Probabilistic Model (DDPM) は画像再構成において有望な性能を示した。
DDPMが生成する高周波の詳細は、モデルが長距離の意味的文脈を見落としているため、HR画像との不一致に悩まされることが多い。
DDPMの詳細な保存能力を高めるために,適応的意味強化DDPM(ASDDPM)を提案する。
論文 参考訳(メタデータ) (2024-03-17T04:08:58Z) - Neural Network Parameter Diffusion [50.85251415173792]
拡散モデルは画像生成やビデオ生成において顕著な成功を収めた。
本研究は拡散モデルにも適用可能であることを示す。
高性能なニューラルネットワークパラメータを生成する。
論文 参考訳(メタデータ) (2024-02-20T16:59:03Z) - Diffusion Models for Wireless Communications [12.218161437914118]
無線通信システムにおける拡散モデルの適用について概説する。
重要なアイデアは、データ生成プロセスを"デノイング"ステップで分解し、徐々にノイズからサンプルを生成することです。
本稿では,AIネイティブ通信システムの開発において拡散モデルをどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-10-11T08:57:59Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
本研究は, フレームごとのノイズを, 全フレーム間で共有されるベースノイズ, 時間軸に沿って変化する残雑音に分解することで, 拡散過程を分解する。
様々なデータセットの実験により,ビデオフュージョンと呼ばれる我々の手法が,高品質なビデオ生成において,GANベースと拡散ベースの両方の選択肢を上回ることが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。