Fast and Parallelizable Logical Computation with Homological Product Codes
- URL: http://arxiv.org/abs/2407.18490v1
- Date: Fri, 26 Jul 2024 03:49:59 GMT
- Title: Fast and Parallelizable Logical Computation with Homological Product Codes
- Authors: Qian Xu, Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Liang Jiang,
- Abstract summary: High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs.
We design fast and parallelizable logical gates for qLDPC codes, demonstrating their utility for key algorithmic subroutines such as the quantum adder.
- Score: 3.4338109681532027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is necessary to perform large-scale quantum computation, but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes, and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical CNOTs between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing $k$-qubit GHZ states and distilling/teleporting $k$ magic states with $O(1)$ space overhead in $O(1)$ and $O(\sqrt{k} \log k)$ logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads.
Related papers
- Polylog-time- and constant-space-overhead fault-tolerant quantum computation with quantum low-density parity-check codes [2.048226951354646]
A major challenge in fault-tolerant quantum computation is to reduce both space overhead and time overhead.
We show that a protocol using non-vanishing-rate quantum low-density parity-check codes achieves constant space overhead and polylogarithmic time overhead.
arXiv Detail & Related papers (2024-11-06T06:06:36Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Generalized Space-Efficient Algorithm for Quantum Bit String
Comparators [0.0]
We introduce a design for the comparison of two $n$-qubit logic states using just two ancillary bits.
The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.
arXiv Detail & Related papers (2023-11-11T14:01:35Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
We propose a hardware-efficient scheme to perform fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable atom arrays.
Our work paves the way for explorations of low-overhead quantum computing with qLDPC codes at a practical scale.
arXiv Detail & Related papers (2023-08-16T19:47:17Z) - Scalable Quantum Error Correction for Surface Codes using FPGA [67.74017895815125]
A fault-tolerant quantum computer must decode and correct errors faster than they appear.
We report a distributed version of the Union-Find decoder that exploits parallel computing resources for further speedup.
The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure.
arXiv Detail & Related papers (2023-01-20T04:23:00Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Log-domain decoding of quantum LDPC codes over binary finite fields [4.340338299803562]
We study the decoding of quantum low-density parity-check (LDPC) codes over binary finite fields GF$(q=2l)$ by the sum-product algorithm, also known as belief propagation (BP)
We show that scalar messages suffice for BP decoding of nonbinary quantum codes, rather than vector messages necessary for the conventional BP.
arXiv Detail & Related papers (2021-04-01T07:15:41Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.