Extractors: QLDPC Architectures for Efficient Pauli-Based Computation
- URL: http://arxiv.org/abs/2503.10390v1
- Date: Thu, 13 Mar 2025 14:07:40 GMT
- Title: Extractors: QLDPC Architectures for Efficient Pauli-Based Computation
- Authors: Zhiyang He, Alexander Cowtan, Dominic J. Williamson, Theodore J. Yoder,
- Abstract summary: We propose a new primitive that can augment any QLDPC memory into a computational block well-suited for Pauli-based computation.<n>In particular, any logical Pauli operator supported on the memory can be fault-tolerantly measured in one logical cycle.<n>Our architecture can implement universal quantum circuits via parallel logical measurements.
- Score: 42.95092131256421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In pursuit of large-scale fault-tolerant quantum computation, quantum low-density parity-check (LPDC) codes have been established as promising candidates for low-overhead memory when compared to conventional approaches based on surface codes. Performing fault-tolerant logical computation on QLDPC memory, however, has been a long standing challenge in theory and in practice. In this work, we propose a new primitive, which we call an $\textit{extractor system}$, that can augment any QLDPC memory into a computational block well-suited for Pauli-based computation. In particular, any logical Pauli operator supported on the memory can be fault-tolerantly measured in one logical cycle, consisting of $O(d)$ physical syndrome measurement cycles, without rearranging qubit connectivity. We further propose a fixed-connectivity, LDPC architecture built by connecting many extractor-augmented computational (EAC) blocks with bridge systems. When combined with any user-defined source of high fidelity $|T\rangle$ states, our architecture can implement universal quantum circuits via parallel logical measurements, such that all single-block Clifford gates are compiled away. The size of an extractor on an $n$ qubit code is $\tilde{O}(n)$, where the precise overhead has immense room for practical optimizations.
Related papers
- Parallel Logical Measurements via Quantum Code Surgery [42.95092131256421]
Quantum code surgery is a flexible and low overhead technique for performing logical measurements on quantum error-correcting codes.<n>We present a code surgery scheme, applicable to any Calderbank-Shor-Steane quantum low-density parity check (LDPC) code, that fault-tolerantly measures many logical Pauli operators in parallel.
arXiv Detail & Related papers (2025-03-06T22:05:52Z) - Computing Efficiently in QLDPC Codes [30.651249760099272]
We introduce a new family of QLDPC codes that enable efficient compilation of the Clifford group via operations.<n>We run circuit-level simulations of depth-126 logical circuits to show that logical operations in our QLDPC codes attains near-memory performance.
arXiv Detail & Related papers (2025-02-11T00:27:55Z) - Universal quantum computation via scalable measurement-free error correction [45.29832252085144]
We show that universal quantum computation can be made fault-tolerant in a scenario where the error-correction is implemented without mid-circuit measurements.<n>We introduce a measurement-free deformation protocol of the Bacon-Shor code to realize a logical $mathitCCZ$ gate.<n>In particular, our findings support that below-breakeven logical performance is achievable with a circuit-level error rate below $10-3$.
arXiv Detail & Related papers (2024-12-19T18:55:44Z) - Fast and Parallelizable Logical Computation with Homological Product Codes [3.4338109681532027]
High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs.
We design fast and parallelizable logical gates for qLDPC codes, demonstrating their utility for key algorithmic subroutines such as the quantum adder.
arXiv Detail & Related papers (2024-07-26T03:49:59Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
We propose a hardware-efficient scheme to perform fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable atom arrays.
Our work paves the way for explorations of low-overhead quantum computing with qLDPC codes at a practical scale.
arXiv Detail & Related papers (2023-08-16T19:47:17Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - t$|$ket$\rangle$ : A Retargetable Compiler for NISQ Devices [55.41644538483948]
t$|$ket$rangle$ is a language-agnostic optimising compiler designed to generate code for a variety of NISQ devices.
The compiler has been extensively benchmarked and outperforms most competitors in terms of circuit optimisation and qubit routing.
arXiv Detail & Related papers (2020-03-24T01:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.