Look Globally and Reason: Two-stage Path Reasoning over Sparse Knowledge Graphs
- URL: http://arxiv.org/abs/2407.18556v1
- Date: Fri, 26 Jul 2024 07:10:27 GMT
- Title: Look Globally and Reason: Two-stage Path Reasoning over Sparse Knowledge Graphs
- Authors: Saiping Guan, Jiyao Wei, Xiaolong Jin, Jiafeng Guo, Xueqi Cheng,
- Abstract summary: Sparse Knowledge Graphs (KGs) contain fewer facts in the form of (head entity, relation, tail entity) compared to more populated KGs.
This paper proposes a two-stage path reasoning model called LoGRe (Look Globally and Reason) over sparse KGs.
- Score: 70.8150181683017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse Knowledge Graphs (KGs), frequently encountered in real-world applications, contain fewer facts in the form of (head entity, relation, tail entity) compared to more populated KGs. The sparse KG completion task, which reasons answers for given queries in the form of (head entity, relation, ?) for sparse KGs, is particularly challenging due to the necessity of reasoning missing facts based on limited facts. Path-based models, known for excellent explainability, are often employed for this task. However, existing path-based models typically rely on external models to fill in missing facts and subsequently perform path reasoning. This approach introduces unexplainable factors or necessitates meticulous rule design. In light of this, this paper proposes an alternative approach by looking inward instead of seeking external assistance. We introduce a two-stage path reasoning model called LoGRe (Look Globally and Reason) over sparse KGs. LoGRe constructs a relation-path reasoning schema by globally analyzing the training data to alleviate the sparseness problem. Based on this schema, LoGRe then aggregates paths to reason out answers. Experimental results on five benchmark sparse KG datasets demonstrate the effectiveness of the proposed LoGRe model.
Related papers
- Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs [29.47155614953955]
We develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space.
Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.
arXiv Detail & Related papers (2023-03-21T13:59:15Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Neural-Symbolic Entangled Framework for Complex Query Answering [22.663509971491138]
We propose a Neural and Entangled framework (ENeSy) for complex query answering.
It enables the neural and symbolic reasoning to enhance each other to alleviate the cascading error and KG incompleteness.
ENeSy achieves the SOTA performance on several benchmarks, especially in the setting of the training model only with the link prediction task.
arXiv Detail & Related papers (2022-09-19T06:07:10Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse
Knowledge Graph [42.220790242917325]
Multi-hop reasoning has been widely studied in recent years to seek an effective and interpretable method for knowledge graph (KG) completion.
Most previous reasoning methods are designed for dense KGs with enough paths between entities, but cannot work well on those sparse KGs that only contain sparse paths for reasoning.
We propose a multi-hop reasoning model named DacKGR over sparse KGs, by applying novel dynamic anticipation and completion strategies.
arXiv Detail & Related papers (2020-10-05T10:28:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.