Complexity of Quantum Harmonic Oscillator in External Magnetic Field
- URL: http://arxiv.org/abs/2407.18631v2
- Date: Sat, 14 Sep 2024 20:41:59 GMT
- Title: Complexity of Quantum Harmonic Oscillator in External Magnetic Field
- Authors: V. Avramov, M. Radomirov, R. C. Rashkov, T. Vetsov,
- Abstract summary: We determine the complexity of thermofield double states as functions of time, temperature, and the external magnetic field.
We confirm that the rate of complexity obeys the Lloyd bound.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the circuit complexity of a quantum harmonic oscillator subjected to an external magnetic field. Utilizing the Nielsen approach within the thermofield dynamics (TFD) framework, we determine the complexity of thermofield double states as functions of time, temperature, and the external magnetic field. Our subsequent analysis reveals various features of this complexity. For instance, as temperature increases, the amplitude of complexity oscillations also rises, while at low temperatures, complexity stabilizes at a constant positive value. Furthermore, the magnetic field creates two distinct sectors: strong magnetic fields exhibit periodic complexity oscillations, whereas weak magnetic fields induce a beating effect. Finally, we confirm that the rate of complexity obeys the Lloyd bound.
Related papers
- Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Complexity of Quantum Charged Particle in External Magnetic Field [0.0]
We determine the complexity of thermofield double states as functions of time, temperature, and cyclotron frequency.
We calculate the rate of complexity and show that it obeys the Lloyd bound.
arXiv Detail & Related papers (2024-08-24T13:02:39Z) - Position dependence of Nielsen complexity for the Thermofield double state [0.0]
We present the state shift under the influence of an external electric field and demonstrate its importance for the construction of the corresponding circuit.
By numerical analysis, we investigate the effect of the frequency and the external field on the dynamics of complexity.
arXiv Detail & Related papers (2023-08-30T08:20:39Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Semiclassical study of single-molecule magnets and their quantum phase
transitions [0.0]
We study systems of single-molecule magnets using a semiclassical analysis and catastrophe theory.
Separatrices in parameter space are constructed which are useful to determine the structure of the Hamiltonians energy levels.
arXiv Detail & Related papers (2023-06-20T07:58:10Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Spin dynamics under the influence of elliptically rotating fields:
Extracting the field topology from time-averaged quantities [0.0]
We focus on quantum systems that can be effectively described as a localized spin-$s$ particle subject to a static magnetic field coplanar.
We derive a relation between two time-averaged quantities of the system which is linked to the topology of the applied magnetic field.
We propose a possible implementation of our approach by a trapped-ion quantum system.
arXiv Detail & Related papers (2020-08-07T10:41:56Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.