Neurosymbolic AI for Enhancing Instructability in Generative AI
- URL: http://arxiv.org/abs/2407.18722v1
- Date: Fri, 26 Jul 2024 13:15:50 GMT
- Title: Neurosymbolic AI for Enhancing Instructability in Generative AI
- Authors: Amit Sheth, Vishal Pallagani, Kaushik Roy,
- Abstract summary: Generative AI has transformed content creation across text, images, and music, showcasing capabilities in following instructions through prompting.
This article explores why neurosymbolic AI offers a better path to enhance the instructability of Large Language Models (LLMs)
We show that neurosymbolic approach enhances the reliability and context-awareness of task execution, enabling LLMs to dynamically interpret and respond to a wider range of instructional contexts with greater precision and flexibility.
- Score: 7.4348066967005275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI, especially via Large Language Models (LLMs), has transformed content creation across text, images, and music, showcasing capabilities in following instructions through prompting, largely facilitated by instruction tuning. Instruction tuning is a supervised fine-tuning method where LLMs are trained on datasets formatted with specific tasks and corresponding instructions. This method systematically enhances the model's ability to comprehend and execute the provided directives. Despite these advancements, LLMs still face challenges in consistently interpreting complex, multi-step instructions and generalizing them to novel tasks, which are essential for broader applicability in real-world scenarios. This article explores why neurosymbolic AI offers a better path to enhance the instructability of LLMs. We explore the use a symbolic task planner to decompose high-level instructions into structured tasks, a neural semantic parser to ground these tasks into executable actions, and a neuro-symbolic executor to implement these actions while dynamically maintaining an explicit representation of state. We also seek to show that neurosymbolic approach enhances the reliability and context-awareness of task execution, enabling LLMs to dynamically interpret and respond to a wider range of instructional contexts with greater precision and flexibility.
Related papers
- From Instance Training to Instruction Learning: Task Adapters Generation from Instructions [29.452006810725184]
This paper focuses on simulating human learning to address the shortcomings of instance training.
We introduce Task Adapters Generation from Instructions (TAGI), which automatically constructs the task-specific model.
We evaluate TAGI on the Super-Natural Instructions and P3 datasets.
arXiv Detail & Related papers (2024-06-18T08:14:28Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
We introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model.
Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning.
arXiv Detail & Related papers (2024-02-19T14:02:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following.
This capability brings with it the risk of prompt injection attacks.
We evaluate the robustness of instruction-following LLMs against such attacks.
arXiv Detail & Related papers (2023-08-17T06:21:50Z) - Mastering Symbolic Operations: Augmenting Language Models with Compiled
Neural Networks [48.14324895100478]
"Neural architecture" integrates compiled neural networks (CoNNs) into a standard transformer.
CoNNs are neural modules designed to explicitly encode rules through artificially generated attention weights.
Experiments demonstrate superiority of our approach over existing techniques in terms of length generalization, efficiency, and interpretability for symbolic operations.
arXiv Detail & Related papers (2023-04-04T09:50:07Z) - CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story
Understanding [21.645075241532794]
This work capitalizes on state-of-the-art Code-LLMs, such as Codex, to bootstrap the use of symbolic methods for tracking the state of stories.
We show that our CoRRPUS system and abstracted prompting procedures can beat current state-of-the-art structured LLM techniques.
arXiv Detail & Related papers (2022-12-21T04:21:35Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions.
We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks.
In trained models, the space of natural language commands indexes a library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals.
arXiv Detail & Related papers (2021-10-04T15:36:32Z) - LTL2Action: Generalizing LTL Instructions for Multi-Task RL [4.245018630914216]
We address the problem of teaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments.
We employ a well-known formal language -- linear temporal logic (LTL) -- to specify instructions, using a domain-specific vocabulary.
arXiv Detail & Related papers (2021-02-13T04:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.