Predicting 3D Rigid Body Dynamics with Deep Residual Network
- URL: http://arxiv.org/abs/2407.18798v1
- Date: Tue, 9 Jul 2024 23:40:10 GMT
- Title: Predicting 3D Rigid Body Dynamics with Deep Residual Network
- Authors: Abiodun Finbarrs Oketunji,
- Abstract summary: We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch.
The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping.
We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the application of deep residual networks for predicting the dynamics of interacting three-dimensional rigid bodies. We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch. The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping. Our deep residual network, consisting of an input layer, multiple residual blocks, and an output layer, is designed to handle the complexities of 3D dynamics. We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies. The model achieves a mean squared error of 0.015 for position predictions and 0.022 for orientation predictions, representing a 25% improvement over baseline methods. Our results demonstrate the network's ability to capture intricate physical interactions, with particular success in predicting elastic collisions and rotational dynamics. This work significantly contributes to physics-informed machine learning by showcasing the immense potential of deep residual networks in modeling complex 3D physical systems. We discuss our approach's limitations and propose future directions for improving generalization to more diverse object shapes and materials.
Related papers
- Object Dynamics Modeling with Hierarchical Point Cloud-based Representations [1.3934784414106087]
We propose a novel U-net architecture based on continuous point convolution which embeds information from 3D coordinates.
Bottleneck layers in the downsampled point clouds lead to better long-range interaction modeling.
Our approach significantly improves the state-of-the-art, especially in scenarios that require accurate gravity or collision reasoning.
arXiv Detail & Related papers (2024-04-09T06:10:15Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - PerSival: Neural-network-based visualisation for pervasive
continuum-mechanical simulations in musculoskeletal biomechanics [1.4272256806865107]
This paper presents a novel neural network architecture for pervasive visualisation of a 3D human upper limb musculoskeletal system model.
We use a sparse grid surrogate to capture the surface deformation of the m.biceps brachii in order to train a deep learning model, used for real-time visualisation of the same muscle.
arXiv Detail & Related papers (2023-12-07T00:07:35Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - 3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive
Physics under Challenging Scenes [68.66237114509264]
We present a framework capable of learning 3D-grounded visual intuitive physics models from videos of complex scenes with fluids.
We show our model can make long-horizon future predictions by learning from raw images and significantly outperforms models that do not employ an explicit 3D representation space.
arXiv Detail & Related papers (2023-04-22T19:28:49Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
Estimating fluid dynamics is a notoriously hard problem to solve.
We introduce a new model, method and benchmark for the problem.
We show that our transformer outperforms state-of-the-art performance on, both, existing synthetic and real datasets.
arXiv Detail & Related papers (2023-02-16T12:59:08Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.