Learning Chaotic Systems and Long-Term Predictions with Neural Jump ODEs
- URL: http://arxiv.org/abs/2407.18808v1
- Date: Fri, 26 Jul 2024 15:18:29 GMT
- Title: Learning Chaotic Systems and Long-Term Predictions with Neural Jump ODEs
- Authors: Florian Krach, Josef Teichmann,
- Abstract summary: Pathdependent Neural Jump ODE (PDNJ-ODE) is a model for online prediction of generic processes with irregular (in time) and potentially incomplete (with respect to coordinates) observations.
In this work we enhance the model with two novel ideas, which independently of each other improve the performance of our modelling setup.
The same enhancements can be used to provably enable the PDNJ-ODE to learn long-term predictions for general datasets, where the standard model fails.
- Score: 4.204990010424083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Path-dependent Neural Jump ODE (PD-NJ-ODE) is a model for online prediction of generic (possibly non-Markovian) stochastic processes with irregular (in time) and potentially incomplete (with respect to coordinates) observations. It is a model for which convergence to the $L^2$-optimal predictor, which is given by the conditional expectation, is established theoretically. Thereby, the training of the model is solely based on a dataset of realizations of the underlying stochastic process, without the need of knowledge of the law of the process. In the case where the underlying process is deterministic, the conditional expectation coincides with the process itself. Therefore, this framework can equivalently be used to learn the dynamics of ODE or PDE systems solely from realizations of the dynamical system with different initial conditions. We showcase the potential of our method by applying it to the chaotic system of a double pendulum. When training the standard PD-NJ-ODE method, we see that the prediction starts to diverge from the true path after about half of the evaluation time. In this work we enhance the model with two novel ideas, which independently of each other improve the performance of our modelling setup. The resulting dynamics match the true dynamics of the chaotic system very closely. The same enhancements can be used to provably enable the PD-NJ-ODE to learn long-term predictions for general stochastic datasets, where the standard model fails. This is verified in several experiments.
Related papers
- Foundational Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.
We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.
We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
We describe a system capable of inference and learning in a probabilistic latent variable model.
We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics.
We show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the 'L0 sparse' regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm.
arXiv Detail & Related papers (2022-04-23T23:16:47Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems [0.0]
For real-life nonlinear systems, the exact form of nonlinearity is often not known and the known governing equations are often based on certain assumptions and approximations.
We propose a novel gray-box modeling approach that not only identifies the model-form error but also utilizes it to improve the predictive capability of the known but approximate governing equation.
arXiv Detail & Related papers (2021-09-01T16:29:21Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Bayesian Neural Ordinary Differential Equations [0.9422623204346027]
We demonstrate the successful integration of Neural ODEs with Bayesian inference frameworks.
We achieve a posterior sample accuracy of 98.5% on the test ensemble of 10,000 images.
This gives a scientific machine learning tool for probabilistic estimation of uncertainties.
arXiv Detail & Related papers (2020-12-14T04:05:26Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Neural Jump Ordinary Differential Equations: Consistent Continuous-Time
Prediction and Filtering [6.445605125467574]
We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time.
We show that our model converges to the $L2$-optimal online prediction.
We experimentally show that our model outperforms the baselines in more complex learning tasks.
arXiv Detail & Related papers (2020-06-08T16:34:51Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.